
Design and Construction of a Fourier Transform
Soft X-ray Interferometer

A thesis submitted to the faculty of
San Francisco State University

 in partial fulfillment of the requirements
for the degree

Master of Science
in

Physics

by

John Spring

San Francisco, California

May, 2000

CERTIFICATION OF APPROVAL

I certify that I have read Design and Construction of a Fourier Transform Soft

X-ray Interferometer by John Spring and that in my opinion this work meets

the criteria for approving a thesis submitted in partial fulfillment of the

requirements for the degree: Master of Science in Physics and San

Francisco State University.

__
 James Lockhart
 Professor of Physics

__
 Adrienne Cool
 Professor of Physics

__
 Malcolm Howells
 Staff Scientist, LBNL

DESIGN AND CONSTRUCTION OF A FOURIER TRANSFORM SOFT
X-RAY INTERFEROMETER

John Spring
San Francisco State University

May, 2000

Helium, with its two electrons and one nucleus, is a three-body system. One of the

models for investigating correlated electron motion in this system is auto-ionization,

produced via double excitation of the electrons. Predictions about the

autoionization spectrum of helium have differed from each other and from pre-

liminary experimental data. However, previous experiments have not been able to

distinguish among the theoretical predictions because their energy resolution is not

high enough to resolve the narrow linewidths of quasi-forbidden peaks and the

resonances that appear in the highest excited states. Consequently, a team of

researchers at Lawrence Berkeley National Laboratory have embarked on a project

for building a high-resolution Fourier-Transform Soft X-ray (or VUV) interferometer

(FTSX) to provide definitive data to answer remaining questions about the

autoionization spectrum of helium. The design and construction of this

interferometer is described in detail below, including the use of a flexure stage to

provide the large path length difference necessary for high resolution

measurements, the manufacture of x-ray beamsplitters, a description of the

software, and the solution to the problems of stick-slip, vibration, and alignment.

Current progress of its development is also described, as well as future goals.

I certify that the Abstract is a correct representation of the content of this thesis.

___________________________________ ___________________

(Chair, Thesis Committee) (Date)

iv

ACKNOWLEDGEMENTS

There are several people I would like to thank for their help in completing this
work. Eddie Moler was my mentor in the physics and technical education
necessary for building the interferometer. Malcolm Howells and Zahid
Hussain directed the work with the wisdom borne of experience and great
physical insight. Scott Locklin has been an inspirational proponent of the
possibilities that our interferometer holds, and has continued the work with
great energy. Jim Lockhart, Adrienne Cool, Malcolm Howells, and Eddie
Moler have taken the time from their busy schedules to actually read this
thesis and make very constructive comments. (It couldn’t have been easy,
folks.) Numerous people contributed to the project, including Rob Duarte,
Bob McGill, Ted Lauritzen, Troy Barbie, Steve Irick, and all the people at the
Advanced Light Source who put the chamber and beamline together.

I would also like to thank my parents and friends for their unstinting and
patient support while I slogged my way through the work and thesis, and I
would like to especially thank Barbara Klatt for her patience, creativity,
support, and ever-outward vision, without which my world would have been
dimmer.

v

TABLE OF CONTENTS

List of Figures .. vii

List of Appendices .. viii

Introduction..1

Overview of the Mach-Zehnder Interferometer..5

Motivation for choosing the Mach-Zehnder configuration ..5

Interferometry ..10

Basic theory..10

Determining Optical Component Tolerances...12

Description of Mach-Zehnder interferometer...23

Mechanical drive...23

X-ray Optics..28

Data acquisition ..35

Measurement and rectification of tilt in stage movement...............................42

Explanation of problem and data...42

Rectification..49

Measurement and rectification of vibration and stick-slip..............................51

Explanation of problem and data...51

Rectification..53

Alignment of the beamsplitters ..54

Conclusions ...57

vi

Appendix 1: Derivation of Geometric Factor Used in Calculating Path Length
Difference ..58

Appendix 2: Software Descriptions..60

Dsp Program (dspacq.c) ...60

VxWorks Program (VxServer.c)..76

vii

List of Figures

FIGURE 1: AUTOIONIZATION PROCESS FOR HELIUM. ..2
FIGURE 2: OPTICAL LAYOUT OF BEAMLINE 9.3.2 AT THE ALS...3
FIGURE 3: PHOTOGRAPH OF THE SOFT X-RAY INTERFEROMETER.......................................7
FIGURE 4: DIAGRAMS OF THE PATHS OF THE SPLIT BEAMS THROUGH THE X-RAY

INTERFEROMETER..11
FIGURE 5: SIMPLIFIED RAY DIAGRAM FOR DESCRIBING SPHERICAL ERRORS.14
FIGURE 6: RAY DIAGRAM FOR TILT ERRORS...17
FIGURE 7: SCHEMATIC DIAGRAM FOR DESCRIBING TILT ERRORS FOR ONE OF THE X-

RAY MIRRORS..19
FIGURE 8: SCHEMATIC DIAGRAM FOR TILT ERRORS. THE MIRROR HAS BEEN

ROTATED..20
FIGURE 9: FLEXURE TYPES. ...23
FIGURE 10: SCHEMATIC OF THE FLEXURE MECHANISM..24
FIGURE 11: SCHEMATIC OF THE DRIVER..26
FIGURE 12: BEAMSPLITTER SCHEMATIC...28
FIGURE 13: TWO OF THE MANY ETCH PLANES ..29
FIGURE 14: SCHEMATIC OF THE PRISM...30
FIGURE 15: THE SHACK INTERFEROMETER ..32
FIGURE 16: TEST SETUP FOR DETERMINING PERPENDICULARITY OF A SIDE OF THE

MIRROR PRISM TO ITS BOTTOM ..33
FIGURE 17: SCHEMATIC OF FLEXURE MECHANISM, SHOWN DEFORMED........................42
FIGURE 18: SCHEMATIC FOR TILT ANALYSIS..44
FIGURE 19: AUTOCOLLIMATOR SCHEMATIC..47
FIGURE 20: CORRECTION OF STAGE TILT WITH TAPER PIN ADJUSTMENT......................49
FIGURE 21: EXPANDED PLOT OF STAGE TILT AFTER CORRECTION. THE PITCH ERROR

HAS BEEN REDUCED TO 0.38 Μ RAD, RMS. ...50
FIGURE 22: THE STAGE IS MOVING IN A NEGATIVE DIRECTION AT -31.3 Μ M / SEC.......51
FIGURE 23: THESE ARE THE SAME DATA (OF FIGURE 22) AFTER THEY WERE FIT WITH

A LINE...52
FIGURE 24: POWER SPECTRUM OF MECHANICAL VIBRATIONS..52
FIGURE 25: CONTACT POINTS ON A BEAMSPLITTER. ..54
FIGURE 26 ALIGNMENT SCAN USING INCOHERENT NEON LIGHT.....................................55
FIGURE A: PATH LENGTH CHANGE DUE TO MOVING ONE OF THE MIRRORS.58

viii

List of Appendices

APPENDIX 1: DERIVATION OF GEOMETRIC FACTOR USED IN CALCULATING PATH
LENGTH DIFFERENCE ... 57
APPENDIX 2: SOFTWARE DESCRIPTIONS ... 59

1

Introduction

Helium has two electrons and a nucleus, making it a three-body system. As such, it

is interesting for theoretical atomic physicists, who have made predictions about the

autoionization spectrum resulting from double excitation of the electrons1,2 .

Autoionization is a process in which both electrons are excited to energy levels

above the ground state; during the subsequent interaction of the continuum and the

Rydberg-like states of the two electrons' wavefunction, one of the electrons is

ionized. Specifically, the "inner" electron is excited into a shell N = 2, and the

"outer" electron into a shell n>N. More than thirty years ago, R.P. Madden and K.

Codling discovered that there is strong mixing among the doubly-excited states of

helium.1 That is, while a simple model of the two electrons behaving independently

would suggest an absorption spectrum including separate lines for the 2s and 2p

series, they observed only one series. In the paper following that one J.W. Cooper,

U. Fano, and F. Prats suggested some properties and a theory for correlated

electron motion in doubly-excited helium.2

Need for higher resolution measurements

Theoretical predictions of the linewidths of the absorption spectrum of doubly-

excited helium have not agreed with each other nor adhered closely to previous

2

Figure 1: Autoionization process for helium. Both electrons are excited
into higher energy states; the autoionization spectrum results from the
interaction of the discrete Rydberg-like states and the continuum.

measurements using transmission gratings. For instance, the linewidth for the

2 − 1,0()3
0 emission was calculated to be 4 x 10-5 meV by Wu and Xi3, 3 x 10-2 meV

by Macías, et al4 and estimated to be <5 x by 10-2 meV by Domke, et al.5, et al.

 (Doubly-excited states of helium may by labeled according to the notation

developed by C. D. Lin, n(K, T)N
A

 , where n is the index of the “outer” electron, N

is the “inner” electron, K [= N - 1 - T, N - 3 - T, ... , -(N- 1 - T)] and T (=0, 1) are

quantum number describing the angular correlations, and A (= +1, -1, 0)

describes the radial correlation.6) Since the best resolution attained so far, at

3

the Advanced Light Source, was E/δE = 64,0007, it is clear that the higher

resolution attainable with this interferometer is required to answer these

questions.

Overview of Beamline 9.3.2

The synchrotron light this experiment uses comes from a bending magnet at the

Advanced Light Source at Lawrence Berkeley National Laboratory. Following is

a description of the beamline, synopsized from the PhD thesis of W.R.A. Huff8

Figure 2: Optical layout of Beamline 9.3.2 at the ALS.

4

Light exits the synchrotron and strikes a cylindrical horizontal focusing mirror,

whose focus is at the exit slit. The light then goes through a circular

polarization-selection aperture (CPA). Bending magnet radiation is linearly

polarized in the horizontal plane of the centroid of the beam; above and below

the horizontal plane, the vertical component of polarization is nonzero,

producing left and right circular polarization, respectively. Thus, if the CPA is

centered on the beam, horizontal linearly polarized light is transmitted. Moving

the CPA above the beam produces left elliptical polarization that becomes more

circular the farther the CPA is moved. Similar motion below the beam produces

right elliptical polarization.

Continuing downstream, the beam encounters the vertical focusing mirror,

whose focus is the entrance slit. Next, the beam encounters the entrance slit.

The entrance and exit slits determine the resolution of the beam according to the

equation

∆λSW = WS1d cosα
mrS1

2

+ WS2dcosβ
mrS2

2

where WS1 = entrance slit width

WS2 = exit slit width

 d = groove spacing if monochromator grating

 α = incident angle of beam to grating

 β = diffracted angle of beam from grating

 m = diffraction order

 rS1 = distance from entrance slit to grating

 rS2 = distance from grating to exit slit

5

The beam next encounters the diffraction grating which, with the entrance and

exit slits, constitutes the monochromator. The energy of the transmitted beam is

selected from the energy band entering the monochromator by adjusting the

angles α and β and order m in the equation

±mλ = d(sin α + sin β)

where λ is the wavelength of the desired energy.

Overview of the Mach-Zehnder Interferometer

Motivation for choosing the Mach-Zehnder configuration

We chose a Mach-Zehnder configuration, and modified its original arrangement

of mirrors from a square to a rhombus. This was done to present grazing-

incidence angled surfaces to the x-ray beam, which would otherwise be

absorbed by surfaces at steeper angles. Two considerations led us to choose

the Mach-Zehnder interferometer over other suitable optical systems:

1. Grazing-incidence requirement. X-rays at high incidence angles are

absorbed by any material used in optics, so an optical system whose geometry

exploits low incidence angles has a higher throughput. For instance, the

Michelson interferometer has a single beamsplitter and two retroreflectors. The

retroreflectors require 90° incidence angles, so they would absorb most of the x-

rays. Other configurations of beamsplitters and mirrors suffer from similar

limitations.

2. High energy resolution. This is the most important reason. Previous high-

resolution studies in this energy regime were carried out using reflection-grating

monochromators. (It is a spherical-grating monochromator that was used to get

the current highest resolution measurements of the autoionization spectrum of

6

helium.) For gratings resolution is determined by entrance and exit slit widths,

the groove spacing of the grating, the distance from the entrance slit to the

grating, and the distance from the grating to the exit slit. For interferometers, the

energy resolution is determined by the path-length difference between the two

beams. (Actually, the resolution is defined by the equation δE = hc
∆x

 where ?x is

the path-length difference (PLD). Resolving power is a unitless measure of the

quality of an optical system, defined by R = E
δE

.) The resolving power necessary

to measure the narrow linewidths of the quasi-forbidden peaks

(~10-5 eV) is on the order of 106 To get this resolving power for x-rays with an

energy of 65 eV requires a PLD of

∆x = hc
δE

= hcR
E

= (1.24eV − µm)(106)
65eV

≅20,000µm = 2.0cm .

Introducing a 2 cm PLD while maintaining alignment of the separate beams (the

physical setup and optical tolerances will be described below) imposed

unprecedented technical requirements on the motion system . This range of

travel is several orders of magnitude beyond the range of piezoelectric ceramics,

and a motion system that uses a lead screw is simply too jerky and imprecise in

its motion. Flexure stages have proven themselves able to accomplish straight

and smooth motion for travel in the range 10-2 - 10-1 cm, so we used their design

as a model for our motion system.

7

Figure 3: Photograph of the soft x-ray interferometer. The driveshaft at
lower left pushes the flexure stage in the center. The stage carries the
mirrors. The position of the stage is measured by the laser interferometer
above. The x-ray beam itself enters from left center and strikes the
upstream beamsplitter at an angle of 20o. The subsequent paths of the two
beams is indicated; one is reflected from the upper pair and one from the
lower pair of mirrors, and then they are recombined at the downstream
beamsplitter. The laboratory reference frame used throughout this paper is
defined as a right-handed Cartesian coordinate system with the z-axis in
the direction of stage travel (roughly from lower left toward upper right in
the photograph), the x-axis in the vertical direction (out of the page in the

8

photo), and the y-axis orthogonal to x and z (toward the lower right in the
photo).

9

 Brief description of the Mach-Zehnder interferometer
The Mach-Zehnder interferometer comprises three subsystems: the x-ray optics,
the mechanical drive, and the data acquisition and control system (see figure 3).
The x-ray optics comprise the mirrors and beamsplitters. The purpose of the
optics is to split the x-ray beam into two beams, introduce a path length
difference, and then coherently recombine them. The four mirrors are supported
by a flexure stage (described below) and therefore move through its 1.5 cm
range. The beamsplitters are fixed to the frame of the flexure mechanism. In
order for the separated beams to recombine coherently, the optics must be
aligned to within ~1 µrad. The reflecting surfaces of the beamsplitters should be
coplanar, and opposing sides of the rhombus-shaped mirror assembly should be
parallel. This alignment is done near zero path length difference (ZPD) with the
stage at rest. It became apparent that manual alignment, by turning screws, was
too crude, so we added computer-controlled picomotors to automatically step
through the small angles necessary for proper alignment.

The mechanical drive comprises the flexure mechanism, a large hydraulic driver,
and an aluminum driveshaft connecting the two. Its purpose is to push and pull
the x-ray mirrors through a total distance of about 1.5 cm, with a minimum of
vibration and pitch angle. At the center of the flexure mechanism is a stage, a
block of steel 2.62" x 4.75" x 2.00", that supports the mirror assembly. The
entire flexure mechanism was cut from a single piece of steel using electric-
discharge machining (EDM). The hydraulic driver was designed to push against
the rather large spring force of the flexure mechanism, but at the same time
could not introduce vibrations, into the mirrors, whose frequencies were near
those of the interference fringes as they moved by the x-ray detector.

The data acquisition system comprises instrumentation and software for
acquiring three main channels of data: stage position, x-ray signal, and x-ray
reference. The control system controls the piston and beamsplitter alignment via
picomotors.

10

Interferometry

Basic theory
An interferometer works by splitting a beam of light, sending the component
beams along two separate paths, and then coherently recombining them.
Coherence means that there is a constant phase between the recombining
beams across a cross-section of the reconstituted beam.

If we have a plane wave that has been split into two plane waves of equal
amplitude given by

E1 = E0(x)e-i(k"x - ωt)

E2 = E0(x)e-i(k"x - ωt + δ)

they will interfere with a phase difference δ, produced by an optical path
difference. The intensity of the sum of the two waves is given by

I = | E1 + E2 |2

 = |E0(x)e-i(k"x - ωt)(1 + e-iδ)|2

 = 2E0
2 (x)(1 + cos δ)

 = 2E0
2(x)[1 + cos(2πσx)]

 = B(σ)[1 + cos(2πσx)]
where x is the optical path difference, σ = 1/λ is the wavenumber of the x-rays,
and B(σ) = 4[E0

2 (x)] = 4S(t) is the time-averaged energy flux through the
system. For a grazing incidence Mach-Zehnder interferometer whose mirrors
are canted at an angle of one-half the incidence angle, the path length
difference is given by

x = 4 ∆y sin α

where the incidence angle α is measured from the plane of reflection of the first
beamsplitter, and ∆y is the distance the mirrors move perpendicular to the line
connecting the beamsplitters (see Appendix 1 for derivation).

11

Figure 4: Diagrams of the paths of the split beams through the x-ray
interferometer. The upper diagram gives the path lengths when the
interferometer is at the high limit of traversal, and the lower diagram is at
the low limit. The total path difference between the two beams when the
stage moves from the high limit to the low limit is 2 x (300.55 mm - 290.13
mm) = 20.84 mm. For x-rays with a wavelength of 20 nm, this corresponds
to about 1,040,000 waves. Also indicated is the reference frame that will be
used throughout this paper to describe the interferometer. It is a right-
handed system in which the z-coordinate is in the direction of travel of the
stage, x is directed vertically, out of the page, and y is to the right. Roll,
yaw, and pitch refer to rotations around the z, x, and y axes, respectively.
"Tilt" refers to any rotation.

For each component of light dσ, the intensity is given by

I dσ = B(σ)dσ + B(σ)cos(2pσx)dσ

so that the total intensity for broadband light is given by the integral

I(x) = B
0

∞

∫ (σ)dσ + B
0

∞

∫ (σ)cos(2pσx)dσ

At zero path length difference, x = 0, so

I(0) = 2 B
0

∞

∫ (σ)dσ

12

and

I(x) =
I(0)

2
 + B

0

∞

∫ (σ)cos(2pσx)dσ

 =
I(0)

2
 + F(x)

where

F(x) = B
0

∞

∫ (σ)cos(2pσx)dσ.

The constant I(0)/2 appears in an interferogram as a dc offset, and is
proportional to the flux through the system. The integral is called the interference
function, and is the position-dependent component of the intensity. It is also the
Fourier transform of B(σ) so we may perform the inverse Fourier transform to get

B(σ) = F
0

∞

∫ (x)cos(2pσx)dx.

Determining Optical Component Tolerances
The sensitivity of the interferometer depends on the ability of the detector to see
high contrast fringes over the greatest range of stage travel possible.
Following Chamberlain9,

I(x) = B
0

∞

∫ (σ)dσ + B
0

∞

∫ (σ)cos(2pσx)dσ.

The most general expressions for the energy flux B and path length difference x
are B = B(σ, u, v, t) and x = x(u, v, t) where u, v are the coordinates in a plane
perpendicular to the beam direction. If we assume that the flux is time-
independent and uniform in space (i.e. a plane wave -- a reasonable
approximation given that the exit slit of the monochromator is ~3 m from the
interferometer), B depends only on σ, and we can write the power distribution as
B(σ)dσ

A
 where A is the area of the incoming beam. Thus for a lossless

interferometer the contribution to the total power at the detector from an element
dA = du dv at (u, v) is

dI(x) = dσB(σ)
A0

∞
∫ [1 + cos(2πσx(u,v))]dA

and the total power is found by integrating over the area of the interfering beams

13

I(x) = dσB(σ)
A0

∞
∫ [1 + cos(2πσx(u,v))]dudv

A
∫∫ (1)

where x(u, v) is the path difference of the rays at position (u, v) on the detector.
In a perfectly aligned system with distortion-free optics, the path length
difference x would not depend on u and v. In other words, plane wave in ->
plane wave out. If, however, a small increment δ to the path length difference is
produced by misalignment or distortions of the optics, we can write x(u, v) = x +
δ(u, v). Substituting into the cosine term of the above equation gives

cos 2πσx(u, v) = cos 2πσ[x + δ(u, v)]

 = cos(2πσx) cos(2πσδ) + sin(2πσx) sin(2πσδ)

 = cos(2πσx) cos(2πσδ)

since δ << 1. Substituting into the power equation (1) gives

I (x) = dσ B(σ)
A0

∞∫ [1 +
A
∫∫ cos(2πσx) cos(2πσδ)] du dv

 = B
0

∞

∫ (σ)dσ + B
0

∞

∫ (σ)cos(2πσx)dσ [1
A

cos
A
∫∫ (2πσδ)du dv]

 = B
0

∞

∫ (σ)dσ + B
0

∞

∫ (σ)D(σ)cos(2πσx)dσ

where

D(σ) =
1
A

cos
A
∫∫ (2πσδ)du dv (2)

is the spectral distortion factor whose value determines the visibility of the
fringes. We chose a value D(σ) > 0.9, giving a 90% visibility of the fringes. This
value was chosen to set a practical limit on the tolerances required of the
various manufacturers of the optical and mechanical components of the
interferometer (see below). R = radius of system aperture = 1mm and σ = 1/λ =
106 cm-1. (The wavelength was set at 10 nm rather than 20 because we want the
upper energy limit to be 120 eV. The 10 nm wavelength forces tighter
tolerances and gives a wide margin of error.)

There are several possible causes for the two beams to not be parallel to one
another at the detector. (Since the wavelength is so short and we are measuring

14

the total intensity over the whole detector, the two beams must have constant
phase over the dimensions if the detector.) The errors fall under two categories:
spherical and tilt errors. If one beam is curved with respect to the other, then
even if they interfere properly on one side of the detector, by the time we get to
the other side, the curvature in the first beam will produce a path error that
could cancel the measurement of the interference. Spherical errors arise from
the x-ray source not producing parallel x-rays and from nonplanar optical
surfaces. Tilt errors, in which both beams are plane waves but are tilted with
respect to one another, may be subdivided into two categories: slope errors,
due to poor surfaces of the optical components , and alignment errors, which
arise from nonparallel mirrors, tilt of the mirrors with respect to the beamsplitters
during stage motion, and misalignment of the beamsplitters with respect to the
mirrors. All the possible causes except the x-ray source and beamsplitter
misalignment would be due to interferometer manufacturing errors. It was
necessary to accurately calculate the greatest tilt and sphericity errors we could
tolerate and distribute them among the optical components reasonably.

Spherical errors

15

φ
r

Rs

Rs

δ

θ
R

Figure 5: Simplified ray diagram for describing spherical errors. A ray is
incident upon a circular aperture of radius R. The source distance is Rs,
the error angle is θ, the displacement error at the aperture is δ, the polar
coordinates of the aperture plane are r, φ, and the radius of the aperture is
R.

In the figure, δ = r tan θ ≅ rθ = r2/ Rs, which gives δ = 2r2/ Rs over the entire
aperture. If this is substituted in equation (2), we get, after Howells10

 D(σ) =
1
A

cos
A
∫∫ (2πσδ)du dv

 =
1
A

cos
A
∫∫ (2πσδ) r dr dφ

= 1
A cos 2πσ r2

R s

A
∫∫ rdr dφ

= 1
A cos

2πσ
RS

r2

 rdr dφ

0

2π

∫
0

R

∫

= 1
A

RS
4πσ

d sin
2πσ
RS

r2

2π

0

R

∫

= R S
2 σA

sin
2πσ
R S

r 2

r = R

r = 0

16

=
RS

2σ πR2()sin
2πσ
RS

R2

=
sin

2πσ
RS

R2

2πσ
RS

R2

= sin c
2σ
RS

R2

where sinc x = sin(px)/p x.

Satisfying our requirement that D(σ) > 0.9 gives σR2/RS< 0.25, or

RS > 4σR 2 = 4(106 cm-1)(10-2 cm2) = 400 m.

Now this radius of curvature pertains to a reflective surface perpendicular to the
beam, so we have to adjust for the angle at which the beam strikes the mirrors
and beamsplitters in determining their tolerances. Using the equation for
calculating the focus of a beam striking a curved surface of radius r we set

RS = (r sin θ)/2, giving for RS = 400m

r > 4.6 km θ = 10° (mirrors)

r > 2.3 km θ = 20° (beamsplitters)

Tilt Errors

As mentioned above, tilt errors, in which both beams are plane waves but are
tilted with respect to one another, arise from poor optical surfaces, nonparallel
mirrors, tilt of the mirrors with respect to the beamsplitters as a consequence of
stage motion, and misalignment of the beamsplitters with respect to the mirrors.

 It should be mentioned here, that of the three rotation errors possible in the
optical elements in the system, roll, yaw, and pitch, the consequences of the first
two on coherent recombination of the beams are considered negligible. Consider

17

figure 3. For small roll errors (i.e. around the z-axis) the mirrors are moving in
their own planes; it would take a roll of 90° for an error of 10° to be introduced,
since that is the incident angle of the beam to the mirror at zero roll. Rolling the
beamsplitters would not introduce any tilt at all. For small yaw errors (i.e. around
the vertical x-axis), the pair of mirrors for each separated beam act as a
pentaprism, where the change in angle of one mirror is compensated by the
same change in the next mirror because they are attached to each other. Yaw
between the beamsplitters would introduce a shear.

δ

ζ

u

δ

s

v

Figure 6: Ray diagram for tilt errors.

In this case, we have an error at the detector δ = ζ v where ζ is the angle and v
the distance along the detector's Cartesian v-coordinate. Substituting this value
for δ into equation 1 gives

D(σ) =
1
A

cos
A
∫∫ (2πσδ)du dv

 =
1
A

cos
A
∫∫ (2πσζ v)du dv

 = 1
A

dv cos(2πσζ v)du
− R 2 − v2

R2 − v2

∫
− R

− R

∫

 = 2R
A

1 − v2

R 2 cos(2πσζ v)dv
− R

− R

∫ = 2
J 1 (2 πσζ R)
(2 πσζ R)

18

where the equation to the Bessel function on the last line may be found in one

of the mathematics handbooks11. Now, 2
J1(x)

x
 falls to 0.9 at x = 0.911; for R = 1

mm and s=106 cm we get ζ = 1.5 µrad. A rule-of-thumb in interferometry is that
light must recombine to within a quarter-wavelength for any reliable
measurement to take place. (If the recombining waves are a half-wavelength off,
we would get troughs combining with crests for no fringes at all.)

For a system aperture of R = 1 mm, ζ R = 1.5 nm < λ/4 = 2.5 nm, well within the
rough tolerance. We can reasonably divide up the angular tolerance between
the mirrors and beamsplitters by noting that making the beamsplitters was
somewhat of a research and development project of its own; making flat mirrors
and coating them is a well-understood technology. So the following tolerances
were chosen:

Mirrors: 0.5 µrad

Beamsplitters: 1.0 µrad

19

These error budgets hold for the surfaces of the manufactured components
(their slope error), pitch of the stage thoughout its motion, and alignment of the
beamsplitters. Since the beamsplitters can be aligned under computer control,
tilts imparted to the two separated beams can be corrected while the stage is at
rest by proper beamsplitter alignment. However, the beams will be shifted
(sheared) with respect to each other. The beams must be within the coherence
width to interfere. Coherence width is determined by the source size and
distance from the source to the image, and is given by the equation12

w ≅ λd
R

 where w = coherence width

 λ = photon wavelength = 20 nm

 R = source size ≅ 300 mm

 d = distance from source = 3 m

When the values are substituted into the equation we get w = 200 µm. This
imposes an angular tolerance on the alignment of the mirrors with respect to
each other, albeit a much looser one than that for the slope errors. Recombining
the beams within their coherence width of 200 µm requires that the mirrors be
perpendicular and parallel within the angle w/L, where w is the coherence width
and L is the distance from the mirrors to the downstream beamsplitter (~1m).
This gives an angular tolerance of 200 µrad for parallelness and
perpendicularity of the mirrors.

Tilt error due to a reflecting surface

Tilt errors are of prime importance in making an x-ray interferometer work, so a
general discussion of their effects is in order. The following derivation follows
Malcolm Howell's ALS Note on manufacturing tolerances for the x-ray mirrors,13

but is applicable to any tilt in the system.

20

Consider figure 7. If the mirror is perfectly reflecting, the incident and reflected
beams ri and rr have equal amplitudes (let's call them unit vectors in their

respective directions) and angles θ with respect to the mirror. Thus the
difference ri - rr will be parallel to the normal unit vector ̂n and given by

ri - rr = 2 sinθ |r| ̂n

= 2(ri· ̂n) ̂n

The reflected beam is
rr = ri - 2(ri· ̂n) ̂n

θ

θ
Y

ZX

r
i

r
r

n

Figure 7: Schematic diagram for describing tilt errors for one of the x-ray
mirrors. The laboratory reference frame is indicated, with the z-axis in the
direction of stage motion, the x-axis vertical, and the y-axis orthogonal to
them. In this case, the y-axis happens to be collinear with the reflected ray
rr, but this is not necessary to the general discussion.

21

θ

θ
Y,

Z

X

ri

n

∆ω

∆n

rr rr∆

direction of
rotation

Figure 8: Schematic diagram for tilt errors. The mirror has been rotated.

If a rotation ∆ω around the positive Y-axis occurs (corresponding to a pitch error
in the direction of stage motion), n will be rotated by a vector ∆n given by

∆ ̂n = ∆ω x ̂n

So rr will correspondingly be rotated by a vector ∆rr given by

∆rr = - 2{[ri·(̂n +∆ ̂n)][̂n +∆ ̂n] - (ri· ̂n) ̂n }

 = -2[(ri· ̂n) ̂n +(ri·∆ ̂n) ̂n +(ri· ̂n)∆ ̂n +(ri·∆ ̂n)∆ ̂n - (ri· ̂n) ̂n]

 = -2[(ri·∆ ̂n) ̂n +(ri· ̂n)∆ ̂n +(ri·∆ ̂n)∆ ̂n]

 ≅ -2[(ri·∆ ̂n) ̂n +(ri· ̂n)∆ ̂n]

The last step in the derivation comes from the approximation that ∆ ̂n « ̂n ⇒
|∆ ̂n |2≅0. Substituting ∆ ̂n = ∆ω x ̂n gives

∆rr = -2[(ri·∆ω x ̂n) ̂n +(ri· ̂n)(∆ω x ̂n)]

22

Now, the scalar product rr·∆rr = 0, which means the two vectors are
perpendicular. Since |rr| = 1 (rr is a unit vector), the tangent of the angle α
rotated by rr will be

tan α =
|∆rr |
|rr |

 = |∆rr| ≅ α

where the last step comes from the small-angle approximation. So the
magnitude of the rotation vector is actually the angle by which the reflected
beam changes when the mirror is rotated by ∆ω. If ∆ω is around the y-axis
(pitch error)

∆rr = -2[ri·(|∆ω| | ̂n | cosθ ̂X) ̂n +(|ri|| ̂n |sinθ)(|∆ω| | ̂n | cosθ ̂X)]

 = -2 cosθ |∆ω| sinθ ̂X).

The first term disappeared since ri ⊥ ̂X . Also ri and ̂n are unit vectors. The

ratio of the magnitudes will tell us how much the reflected beam moved for a
given pitch error ∆ω:

|∆rr |
|∆ω|

 = 2 cosθ sinθ = 0.342 for θ = 10o

The mirrors move as a unit; their geometry dictates that a pitch error will be
quadrupled, since one set of mirrors will reflect the beam up twice, and the other
set will reflect it down twice by the same amount. The tilt error was estimated
above to be 1.5 µrad, so the maximum allowable pitch error for the stage travel
(in a system that is perfectly aligned while the stage is at rest) is

|∆ω| =
|∆rr |

8cosθsinθ
 =

1.5x10− 6

8cos10o sin10o = 1.1 µrad

23

Description of Mach-Zehnder interferometer

Mechanical drive

Flexure Mechanism
The very high resolution obtainable from an interferometer is inversely
proportional to the path length difference introduced between the separated
beams of light. In this case, we must introduce a path length difference that is a
million times the wavelength of the light, while continually recombining the
beams coherently (i.e. with constant phase). This places two demands on the
mechanical system used to introduce the PLD: it cannot introduce excessive tilt
or indexing (position) errors. As mentioned above, the long distance requires
the use of a flexure mechanism

A flexure hinge is used in applications where the stick-slip caused by two
surfaces sliding along each other, as in conventional hinges, is unacceptable. It
consists of a thin piece of material, usually metal, that may be bent many times
without fatiguing. It is much longer along the axis of rotation to prevent rotation
around other axes and to provide mechanical stability. The shape of a flexure
hinge and the material from which it is made determine its mechanical
properties, the important ones being maximum angle of rotation, displacement of
the hinge point (center shift), and fatigue due to stresses within the material and
number of rotations. Three possible configurations for flexure hinges will be
compared here: flat, crossed-strip, and cartwheel.14

A simple flexure hinge may be constructed out of a thin, flat piece of spring steel.
Fabrication of a flat hinge is easy, and since the stress to the hinge is distributed
over its length, it has low fatigue. However, as a flat hinge bends, the hinge point
moves, not necessarily predictably.

24

Figure 9: Flexure types. A: A strip hinge is fairly easy to make, but it has a
large center shift. Also, there are no strips to prevent the two ends from
twisting around an axis connecting them. B: A crossed-strip hinge
prevents twisting by constraining that rotation with a strip at right angles
to it. However, they cannot be produced along with the rest of the flexure
mechanism. C: Cartwheel flexures can be produced with EDM techniques
along with the rest of the mechanism.

Crossed-strip hinges actually produce a worse center shift than a flat hinge (by a
factor of 2).15 However, theoretical calculations demonstrate that a monolithic
cartwheel hinge reduces the center shift by a factor of 3.6.16 Also, crossed-strip
hinges cannot be produced with electric discharge machining (EDM) as part of a
monolithic flexure mechanism. Thus a cartwheel-type flexure hinge was
selected (see figures 9 and 10).

The hinges, as well as the test of the flexure mechanism, were monolithically cut
from a 14” x 10” x 2” piece of maraging steel. The choice of this very hard, low-
fatigue steel was relatively expensive, but proved necessary when we had to
modify the flexure mechanism later to correct for manufacturing flaws.

25

Figure 10: Schematic of the flexure mechanism. The stage at center is
shown in the center of its traversal range, at zero path length difference.
Comparing this figure to figure 15 gives an idea of how the mechanism
deforms when the stage is driven to one end. The points of maximum
stress indicated in the magnified diagram of one of the flexures occur just
where the hub at the center of the hinge tapers to the width of the spoke.
This design for the flexure mechanism was chosen to halve the angle that
each hinge rotates, thus greatly reducing the stress on the hinge.

The design shown in figure 10 was cut using electric discharge machining
(EDM), a process in which, after a rough cut is made, a wire at ~500 V is brought
near the surface to be machined by a numerically controlled arm. The wire is
tightly stretched into a straight line by its mounting, and moved parallel to the
surface by the arm. Any protuberance above the surface is ablated by the
resulting spark discharge; this material is deposited on the passing wire. The
wire is unrolling from a large spool, so that the "plated" wire moves away from
the next section of unmachined steel. The result is that a very flat, smooth
surface is produced that follows the contour of the arm's path.

Driver

A large hydraulic driver was custom-designed for the interferometer at LBNL
(see figure 11). Of primary consideration in its design, besides producing
enough force to move the stage and mirrors through their entire range, was
minimizing stick-slip. Using a continuous-motion driver with fast, precise
position measurement electronics instead of a stepper motor eliminated

26

problems associated with motors and gears such as backlash and lead-screw
wobble. Errors introduced by these mechanisms are difficult enough when
indexing position at the micron level. They become nearly intractable at the
nanometer level. Piezoelectric materials can provide repeatable Angstrom-
resolution motion, but have a limited range of travel. The problem of stick-slip
will be discussed in detail below, but briefly, it is measured as a nearly
discontinuous "jump" in position while moving the stage at a constant velocity.

The housing was machined from a solid piece of brass, 8.000" x 4.000" x 4.000",
with a bore diameter of 2.500". The piston was also machined from brass and
has dimensions 2.497" OD and 1.003" ID to accommodate the bore of the
housing and the driveshaft, respectively. It has a 0.184" deep gland (notch for
an O-ring) cut in OD and a 0.184" deep gland cut in ID. The piston is fastened
to the driveshaft with a tapered brass collet. The collet fits into a tapered hole in
the piston and both have matching threaded holes for mating them; screwing
them together forces the tapered collet against the driveshaft.

 The driveshaft has several parts to it: a hollow tube, 1.000" OD and 0.750" ID x
17" that has a 2.5" conflat flange welded to it on one end for bolting it to the
vacuum system via a bellows, an aluminum connecting rod, 0.625" x 24" that has
a 1/4-20 threaded hole at either end to accommodate the flexure joints, two
stainless steel flexure joints, 0.625" x 4.05" that have a machined neck, 0.080",
allowing for small angular errors in alignment of the axis of the driveshaft and the
center point of the stage, a taper pin, 0.625" at the large end tapering to 0.500"
at the small end for wedging the collet between the taper pin and the ID of the
hollow tube, and a collet, a piece made from a stainless-steel tube by cutting
slits from one end of the tube to within 1/4" of the other end, alternated with
similar ones cut from the other end, forming a sort of zigzag tube. Screwing in
on the taper pin forces the collet against the ID of the driveshaft, locking the
connecting rod to the driveshaft.

Q u i c k T i m e ™ a n d aP h o t o - J P E G d e c o m p r e s s o ra r e n e e d e d t o s e e t h i s p i c t u r e .

27

Figure 11: Schematic of the driver. The piston, housing, and end caps are
all made out of brass. A polished stainless steel hollow driveshaft runs
through the center of the driver; this is the sliding surface when the piston
moves. The driveshaft slides against O-rings at either end of the housing,
and is wetted with oil on both sides of the O-ring. Inside the driveshaft , a
connecting rod is fastened to one end with a collet; the other end is free.
A machined flexure joint between the connecting rod and the collet allows
the connecting rod to move about freely within the driveshaft. The other
end of the connecting rod is fastened to the flexure stage with another
flexure joint, thus allowing small angular movement by the connecting rod
without putting a large torque on the stage.

We chose mineral oil as the hydraulic fluid; there are commercial hydraulic
fluids that have better frictional and viscosity characteristics, but mineral oil is
readily available and is good for the skin. The direction and speed of the piston
was controlled by a system of valves, pressure regulator, and Tygon® tubing

28

connected to ports on either side of the piston. We found the Tygon tubing to be
too elastic; the piston would keep moving after the pressure was released. In
the final version of the hydraulic system the Tygon was replaced with rigid
copper tubing. Also in the final version we added solenoid-actuated valves so
that spectra could be acquired completely under computer control.

 X-ray Optics
The optics of the interferometer consist of four mirrors and two beamsplitters.

Beamsplitters
Two types of beamsplitters exist: amplitude-dividing and wavefront-dividing. An
example of an amplitude-dividing beamsplitter is the half-silvered mirror used in
the Michelson-Morley experiment to demonstrate the absence of a light wave
propagating ether. The beam must be transmitted through some material such
as glass and either be reflected along one leg of the interferometer or
transmitted along another. However, soft x-rays are quickly absorbed for most
materials, so we selected a wavefront-dividing beamsplitter.

A wavefront-dividing beamsplitter separates a plane wave into a relatively small
number of waves. It consists of a number of alternating slits and flat, mirrored
tines that form a grating. One may get a sense of scale from figure 12. The
second drawing shows a cutaway side view of the beamsplitter. Light would
enter from below at an angle of 20° with respect to the plane of the beamsplitter.
Half of the light would be transmitted through the slits and half would be
reflected by the tines. The rear of the beamsplitter is cut away at a 10° angle to
prevent any blocking of the transmitted beam.

29

This EPS image does not contain a screen preview.
It will print correctly to a PostScript printer.
File Name : bs_1.epsi

Figure 12: Beamsplitter schematic.

Four beamsplitters were each made from a single crystal of silicon by Boeing
North American. Each beamsplitter is a rectangular block of pure silicon, 95.52
mm x 24.00 mm x 5.00 mm (approx. 3 3/4" x 1" x 1/5"). (See figure 12.) The
reflecting surface was ground and polished to a roughness of <5 Å rms and a
slope error of <0.75 µrad rms. The 100 mm period slots were made by using a
photolithographic mask and then anisotropically etching the silicon along the
(110) crystalline plane using KOH as the etchant (see figure 13). Finally, the
beamsplitters were coated with 150Å of molybdenum using vapor deposition, a
process that produces extremely smooth surfaces.17 Molybdenum has one of
the highest reflectivities for x-rays of any known material.18

30

(111) (110)

Figure 13: Two of the many etch planes. (111) is not etched, while (110) is
etched. Roughly, the longer the interatomic bonds, the weaker the
interatomic forces, and the easier it is to break them with an etchant.

After getting the beamsplitters from Boeing, we installed them and began testing
and aligning them manually. However, unknown to us at the time was the fact
that molybdenum oxidizes fairly quickly, in less than a month. The beamsplitters
were open to air for a substantially longer time. The oxidation that took place
made the beamsplitters rough and required our stripping the molybdenum off
with 3% hydrogen peroxide and having them recoated. They were quickly
reinstalled and the vacuum system was pumped down to 10-5 torr This worked.
Following are the theoretical tolerances and their measured values:

Type of error Theoretical Measured

Slope error <1.0 µrad <0.7 µrad
Roughness don't know <3.5Å
spherical error radius >2.3 km >6.4 km

31

Mirror Assembly

A

A'

B'

B

Y

P

P'

Y'

Figure 14: Schematic of the prism used to mount the x-ray mirrors. The
vertices of adjacent faces that need to be perpendicular are indicated with
the right-angle symbol |_. Thus the faces labeled A, A', B, and B' are all
perpendicular to the base. They are also the faces to which the four x-ray
mirrors are optically contacted. In addition, opposite faces of the prism
must be parallel to each other, so A || A' and B || B'. The face labeled
PYY'P' corresponds to the end-on view of side PY illustrated in figure 16, in
which the apparatus for measuring the parallelness and perpendicularity of
the prism is discussed.

The mirror assembly was made from five separate pieces: four identical
rectangular blocks of glass and a diamond-shaped glass prism. The upper half
of one face of the blocks was initially coated with 500 Å of molybdenum to give
them a mirror finish, but this was later stripped off due to oxidation. The mirrors
were then mounted on the prism by carefully sticking them on its perimeter. No
adhesive is necessary (or desired) if the matching surfaces are flat and smooth
enough; The electrostatic contact forces are strong enough to hold the
assembly together.

32

Photon Sciences, the manufacturer of the mirror assembly, qualified it by using
several optical instruments: parallelness and perpendicularity were measured
using an Haidinger fringe test , described below; surface roughness was
measured with a WYKO TOPO 2D surface profiler; slope error was estimated
with a WYKO 6000 interferometer and λ/30 test plates.

The Haidinger fringe test exploits the movement of Haidinger fringes to measure
the error in perpendicularity and parallelness of the prism. Haidinger fringes
appear as rings or lines between two nearly parallel surfaces when
monochromatic, coherent light (a laser) is shined normal to the surfaces. The
surfaces may bound any medium (e.g. they may be opposite sides of a block of
glass or the faces of two plates of glass with air between the faces). The fringes
arise, of course, from incident light interfering with light reflected from the
downstream surface. The interference pattern appears at the upstream surface
and the image has its focus at infinity.

If either the observer or the test sample is scanned relative to the other, the
fringes will move; our eyes are sensitive to motion and it is this procedure that is
used in calibrating the prism. One fringe of motion corresponds to an error of
λ/4. (The conditions for maxima and minima are:

d = (m/2 + 1/4)λ/n m = 0,1,2,... maxima
d = mλ/2n m = 0,1,2,... minima

where d is the distance moved, m is the order index of diffracted light, λ is the
wavelength of light, and n is the index of refraction of the glass. These
equations include the 180° phase shift when n2>n1 and 0° phase shift when
n2<n1. (n1 and n2 refer to the indices of refraction of the media in which the light
is incident and refracted from the interface, respectively. The two media are air
and glass.) If we plug in the same m in both equations we get ?d = λ/4. Glass
also amplifies the sensitivity of the test by shortening the light's wavelength by
1.5, the index of refraction, and a trained observer can detect motion of 0.1
fringe. Putting all this together, the minimum observable positional error is λ/40
= 633 nm / (1.5 * 40) = 11 nm.

33

A

Lens
BS

O

Test Sample

Figure 15: The Shack interferometer. Light enters at A, is reflected off the
beamsplitter BS and is reflected either internally from the lens or externally
from the test sample. The light beams returning from these two interfaces
interfere and produce fringes at O.

Referring to figure 16, test prism LMN is placed atop of prism PYRS. XYZ is
(should be) a 45° right triangle. The perpendicular bisector of hypotenuse XZ
should bisect ∠ Y, forming the 45° right triangles ZOY and YOX. The test beam
enters the test prism at A and follows the path A-B-C-D-C-B-A.

The fringe pattern is created between the two surfaces XO and OZ via the roof
angle XYZ. Thus, as XOZ is a continuous surface, lack of any motion in the
fringe pattern verifies that angle XYZ is indeed 90°. In considering whether the
angle is smaller or larger than 90°, it should be noted that the test becomes a
measure of the equality of XZ relative to 2YO -- the height of the prism -- and XZ
is greater than or less than 2YO corresponding to the angle being greater than
or less than a right angle.

34

O
A

D

B

C

X

Y Z

N L

M

P

R

S

Figure 16: Test setup for determining perpendicularity of a side of the
mirror prism (PY) to its bottom (YR). (This diagram should be regarded as
an idealized end-on view of one of the sides of the diamond-shaped prism.
The rest of the prism has been deleted for the sake of clarity.) Light from
the Shack interferometer enters the test prism LMN at A and follows the
path ABCD, is reflected at D, and returns along that path. The test beam is
scanned from M to O; if the angle Y is not 90°, the beam will not return to A
but a distance from A proportional to the error in angle Y and path length
2ABCD. The Haidinger fringes observed at the Shack interferometer will
thus move across the field of view.

Consider the prism XYZ. The dimensions XO, OZ, and OY are approx. 70 mm.
Assume that, in scanning the Haidinger fringes from X to O, there is an error of
one fringe (316.5 nm for HeNe). This implies that 2XZ is one fringe different
from 4OY. Actually, the dimensional difference is ~211 nm due to the index of
the glass. Therefore,

 2XZ = 4XO = 4OY + 211 nm
 O = OY + 53 nm

Now,
tan(∠ XYO) = XO / (OY + 53 nm)

 = 70 mm/ 70.000053 mm
 = 0.99999924286

35

 = 1 - (0.757 x 10-6)
or, since tan(∠ XYO) ̃∠ XYO for small angles, the error is 0.757 µrad. For the
90° angle XYZ, the error is just twice this, or 1.514 µrad per fringe over the scan
length XO. However, the actual scan distance is only from M to O, about 1/4 of
XO. So 1/4 fringe over this length gives the 1.5 µrad error in 90°. Our
specification is 2.5 µrad, or about 0.4 fringe. This tolerance is actually much
less than the 200 µm tolerance for shear derived in the optical tolerances
section above (p. 17).The engineers who use this method state “In reality, it is
quite easy to observe and fabricate to 1/10 fringe”19.

Following are the theoretical tolerances of the mirror assembly and their
measured values:

Optical
component

Type of error Theoretical Measured

Mirrors Slope error 0.5 µrad 0.5 µrad
Roughness <4 Å 1.7 Å
spherical error radius >4.6 km >6.0 km

Prism perpendicularity ±2.5 µrad <0.6 µrad
parallelness ±2.5 µrad 0.6 µrad

Data acquisition

Hardware

Measurement of stage position using HP laser interferometer

Position of the stage can be measured to ~3Å with the use of a heterodyning
laser interferometer system from Hewlett--Packard. The system consists of:

5517B Dual-polarization Dual-frequency Helium-Neon laser head & power
 supply

10897B Laser Axis Board, 6U VME configuration
10716A High-resolution Interferometer
10780F Remote Receiver, with fiber optic lens connection

36

We provided the VME crate and controller, and another member of our team
(Eddie Moler) wrote the driver software for the laser positioning system. In
addition, we provided ancillary components: mirror and mirror mount for the
stage, mirror and mirror mount to angle the laser light into the viewport on the
side of the vacuum chamber in which the x-ray interferometer resides, mount for
the laser head, and a mount for the laser interferometer.

Description of HP laser interferometer

The HP laser interferometer measures position to a resolution of ~3 Å in the
following way:20

a. Generate a dual-polarization, dual-frequency laser beam by imposing an axial
magnetic field on the helium-neon gas mixture before excitation. This splits the
energy levels of the light-emitting electrons, and confers opposite circular
polarization on the two slightly different frequencies of emitted light. The
engineers then used waveplates to convert the circularly polarized components
into orthogonal linearly polarized beams.

b. Sample part of the dual-frequency beam within the laser head to create a
reference frequency.

c. Send the rest of the beam to the interferometer, where a polarizing
beamsplitter separates the two frequencies (which are also orthogonally
polarized) and sends them along different paths. One beam hits a retroreflector
inside of the interferometer to provide a non-moving reference beam. The other
beam goes to the mirror on the thing you want to measure. In the high-
resolution interferometer, the measurement beam is reflected four times from the
measurement mirror. Since the path-length difference of the moving and
nonmoving beams are doubled for each pass (once going to the mirror and once
coming back), four bounces multiplies the path-length difference by eight.

d. Recombine the two beams inside of the interferometer and send them to the
receiver, whose detector senses the beat frequency and converts it into a train
of pulses at that frequency.

37

e. Send the reference and measure frequencies on to the Laser Axis Board.
Here the reference waveform is electronically subdivided into 256 equal
timeslices. The edge of the (rectangular) measurement waveform is then binned
onto one of the 256 timeslices, thus improving the resolution by 256. This
improvement, taken together with the eightfold improvement due to the multiple
passes of the measurement beam, give a resolution enhancement of 2048. The
wavelength of HeNe light is 633 nm, so the resolution is
633 nm/2048 = 0.309 nm.

The position is sampled at a rate of 10 MHz. HP guarantees that the latest
datum in the position register is no older than 0.290 µsec.

Alignment of HP laser interferometer
We mounted the measurement mirror beneath the stage, collinear with the
driveshaft axis. The laser was mounted on a tripod made out of aluminum plate,
threaded rod, nuts, and washers (designed and manufactured by grad students).
We found it necessary to mount another mirror on a magnetic stand in order to
angle the laser light into a viewport on the side of the vacuum chamber.
Alignment then consists of getting the laser beam to go in the top port of the
interferometer and come out the bottom port without hitting the sides. The
receiver has a green LED on it that lights up when it gets a beat frequency. If
the alignment is slightly off, apparently only two of the four passes are traversed
by the measurement beam; the distance measured is half of what it should be.
Alignment must be experienced to be understood.

Measurement of x-ray signal intensity
The x-ray signal is measured in one of two ways: a silicon photodiode or a gas
cell filled with helium under low pressure. The former method measures
electrons liberated from their valence bands by incoming x-rays. The number of
electrons, and therefore the measured current, are proportional to the number of
photons and their energies. Theoretically, the number of electrons liberated is
proportional to an integral multiple of the band gap in silicon, about 3.61 eV. So

38

for 64 eV photons, we would expect 17 electrons and holes to be liberated. (The
actual response of the photodiode depends on a number of things, such as the
thickness of any oxide layer formed on the surface of the diode and
impurities.21,22) We used a Hamamatsu silicon PIN photodiode, model S3580-19.

The photodiode current was amplified and transduced into a voltage with a
Keithley 428 Current Amplifier. The output of the amplifier was fed into an
analog-to-digital converter (ADC) board.

Two VME boards, manufactured by Spectrum Communications, are used in
acquisition of the x-ray signals: a carrier board (CV2) for the digital signal
processor (dsp) and a Daughter Module Carrier Board (DMCB) for the analog-to-
digital converter. They are linked externally via the VMEbus backplane and
internally by a 32-bit flat ribbon cable (the dBEX32 bus).

The CV2 provides interfacing between the VMEbus (i.e. the outside world--us),
and the DSP and DMCB. It has shared memory that is available to the VMEbus
and the module that the DSP is mounted on. This module (called TIM after
Texas Instruments Module) has its own local memory and TI's TMS30C40 DSP.
Interfacing to the VMEbus is provided by the VMEbus Interface Control/VMEbus
Address Control (VIC/VAC) chip.

The DMCB can carry up to four modules of various functions. We use one 16-
bit ADC module. The DMCB interfaces its modules with the dBEX32 via
AMELIA2 chips, application-specific integrated circuits designed by Spectrum
Communications. The ADC is Burr-Brown's AM/D16SA, a 200 kHz 16-bit
resolution ADC.

Software
Software for the data acquisition system was constructed at three levels: the
lowest level was a program written in C and assembly for the dsp; the middle
level was a C program written for the VMEbus controller that connected the dsp
to the Sun workstation; the top level consisted of a set of LabVIEW panels that
controlled experimental variables and displayed the data. The programs and

39

program environments will be briefly described here; complete descriptions of
the dsp and VxServer programs are included in Appendix 2.

Digital signal processor (DSP) program
The dsp program, written in C and assembly, acquires data from three data
channels (viz. position and two x-ray intensity signals), and sends them to the
VME controller as one of several streams: raw or filtered, binned or unbinned, or
normalized signal data. Raw data means a time series capture of signal or
position. Filtered data are raw data processed by the dsp through a finite
impulse response (FIR) algorithm to eliminate noise. Binned data can be
represented as a signal vs. position plot; although they are acquired separately,
the x-ray signal depends upon the stage position. We can pick a position bin
size and average all the x-ray signals that fall into that bin. Therefore it is
possible to obtain a higher position resolution than from a single measurement.
Normalized signal data are data from the position-varying x-ray channel divided
by the data from the reference x-ray channel. This is done to eliminate changes
in the x-ray signal external to the experimental setup, such as flux variations or
motion of the beam on the detector.

vxWorks
vxWorks is a real-time Unix-based operating system. While most of the shell
commands are identical to those in Unix , the kernel is considerably more
compact, and there are some additions useful to a real-time system, such as a
command line interpreter of most C instructions and the capability to change the
values of global variables while the program is running.

The server program evolved from a continually running program that polled flags
from the dsp and user interface, to one that initializes interrupts and
semaphores, and then blocks until it receives one of these signals. The strategy
is to make the CPU wait until something needs to be done, like transfer data,
and then do it immediately. In the earlier version, the CPU continually cycled
through an infinite loop while polling flags; this means that an important task
might have to wait while the CPU went through a whole cycle.

40

VxServer Program Description

In a similar fashion to the dsp program, I will describe the behavior of only one
datastream, "raw signal 1 binned by raw HP position." The main purpose of this
program is to serve as an interface between the dsp program and the user
interface. The user sends a data request from the LabVIEW user interface
(running on a Sun workstation) to VxServer (running on the MVME167 controller,
hereinafter referred to as the 167). Since the two programs reside on different
computers, the request is sent via a Remote Procedure Call (RPC). The source
code for this high-level protocol can be automatically generated by using a Unix
function "rpcgen." It is not described here more than by stating that the RPC
task server on the local machine blocks CPU execution of local functions until it
receives a properly constructed command sent from a remote computer.

Once the RPC for data acquisition is received by s1hpctrl_1, the mirror stage is
moved to the start position, the pertinent parameters for this data stream are set
to their values, and the S1HP flag in the channel_go register is set. The dsp
continuously polls this register, and when it sees the flag immediately starts
collecting data for that data stream.

The dsp sends an interrupt to VxServer when one of its data arrays is filled. The
applicable interrupt handler gives a semaphore (software "interrupt") to other
code that is blocking CPU execution until the semaphore is taken. That code in
turn does whatever processing is necessary and forwards the data array to the
user interface on the Sun workstation.

LabVIEW

41

LabVIEW is a graphically-based language designed for realtime data
acquisition, processing, and control. The programmer designs a front panel
containing controls (e.g. start and stop buttons, numerical and text string entry
boxes, and pull-down menus) and indicators (e.g. "LEDs", numerical and text
string outputs, and 2D and 3D graphs, images, and even pictures of incoming
data). The guts of the interactions of the front panel elements are contained in
the block diagram associated with the front panel. Each front panel element
created also has an icon in the block diagram; these block diagram icons may
then be "wired" together using a colored line created by clicking on one icon with
a mouse and dragging it to another icon.

There are many block diagram icons for acquiring, processing, and outputting
data. One may also create icons that interact with object code compiled in other
computer languages. This would be used, for instance, to interface LabVIEW
with instrument drivers that directly acquire data or control motors. We used
LabVIEW's networking VIs to create a Remote Procedure Call (RPC) VI that
sends commands to the vxWorks program, and used Transmission Control
Protocol (TCP) VIs to stream the incoming data to a 2D graph. We also have the
option of saving the data to a file or printing the front panel with its results.

EPICS
The Experimental Physics and Industrial Control System (EPICS) was developed
at Los Alamos National Laboratory as a set of real-time control and data
acquisition tools for particle accelerators. Particularly useful features for the
distributed realtime system that controls the ALS are: the ability to monitor and
control machine variables from any controller (as long as it has permission to do
so), broadcasting the value of any variable to a given list of controllers, and
event-driven data flow. This last feature means that a programmer can set up a
block of code to execute only if a particular variable changes, instead of
constantly polling its value (which wastes valuable CPU time).An experimenter
can design a software model of the way his instrumentation operates using the
concept of a state sequencer. For instance, we needed to initialize certain
registers and buffers on our dsp board and laser axis board, then start data
acquisition, and then display the results on a graph. Using state notation

42

language (SNL, a small subset of the C language, with some database -specific
commands added), we set up the sequence of events; non-SNL code (i.e.
standard C that is not part of SNL) is signified by using the escape character %,
and the two software modules are compiled separately and then linked.

Each database record is a structure comprising a set of fields called process
variables, which are global variables available to the operating system for
monitoring ongoing processes such as data collection, instrumentation status,
and control. Thus we might declare a record called “Power” that is displayed in
a window as a square labeled “ON” when its associated process is active, and
changes to “OFF” if one clicked on it with the mouse; this would inactivate the
process as well. Similarly, we might declare a record called “Data” and monitor
its value; when that value changes, we can plot the new value on a Cartesian
display. Thus the entire program is driven by changes in process variables,
which allows for a much more efficient use of CPU time.

 Measurement and rectification of tilt in stage movement

Explanation of problem and data

The purpose of the flexure stage is to move the mirrors in a straight line. While
this may appear to be a simple task, it is one of the most important and
demanding requirements. “Straight” means that the stage must not diverge from
a straight line by an angle of more than 0.5 µrad over its entire range of travel
(this tolerance was derived above in the "Optical Component Tolerances"
section above, p. 17). This requirement dictated the manufacturing tolerances of
the flexure mechanism as well as the optics.

43

Figure 17: Schematic of flexure mechanism, shown deformed. In the lab
reference frame, the mirrors move in the ±z direction. The x-ray beam is
directed toward the +y direction and is split into two equal components
that must remain coplanar through their separate paths, so they can
interfere at the other end. Any phase difference must be due only to the
linear movement of the mirrors and not to tilt around the y axis (pitch). The
stage is shown pushed to the far end of its traversal range. At zero path
length difference the stage is centered and the flexures are parallel (see
figure 10).

The flexure mechanism may be understood as two pairs of nested rectangles,
each of which may be deformed into a parallelogram. One such pair of
rectangles in figure 17 are ABDC and EFHG. The outer rectangle described by
the hinges ABCD in figure 17 is broken out in figure 18.

44

Figure 18: Schematic for tilt analysis. This is a perspective drawing of the
outer rectangle ABCD in figure 17, above. The stage travels in the ±z
direction. The angles α and β are measured between the axes of two
neighboring hinges (which are supposed to be parallel) in the xy and yz
planes, respectively. In the figure, the two leftmost hinges should both be
parallel in the xy plane to the coordinate measuring machine's x-axis. α1 is
the angle of the rear axis and α2 is the angle of the front axis with the x-

axis. The total angle of these axes relative to each other is α. Similarly, β is
the total angle between the two front hinge axes, measured in the xz plane
parallel to the x-axis. Pitch error would correspond to rotation around the
y axis, and is primarily due to nonzero β (see text).

We know from simple beam theory that a cantilever (a stiff but flexible thin rod,
constrained at one end) of length L may be modeled as a couple of length 2L/3
and a torque centered at the pivot point. This model is valid only for small
displacements of the cantilever from its equilibrium position. A double cantilever
(constrained at both ends) may be modeled as two cantilevers whose "free"
ends coincide with the center point between the two constrained ends.

45

The following analysis follows that of A.E. Hatheway in his paper on the
alignment of flexure stages.23 Hatheway considered a flexure system consisting
of two thin rectangular flexures supporting a rigid rectangular table. He
analyzed the effects of nonparallel neutral axes (nonzero α in figure 18),
nonparallel principal axes (nonzero β in the figure), unequal span lengths,
unequal flexure lengths, and driver misalignments. Of the above possible
causes of tilt errors, our design eliminated all except the first two from
contributing significantly to stage pitch for the following reasons: unequal lengths
of the flexures or spans between them produce yaw in our system; rotation in
this direction should not produce deflection of the beams because the mirrors
act as pentaprisms -- if the beam strikes one at a more acute angle than ideal, it
will strike the other mirror at an equally obtuse angle, canceling the error. Driver
misalignments were compensated by adding the flexure joints in the connecting
rod and adding a mechanism for adjusting the push point.

Roll and yaw produce negligible errors, so we consider only pitch error, or
rotations around the y-axis (Ry). "Inner" and "outer" rectangles refer to the

rectangles EFHG and ABDC and their analogues MNPO and IJLK on the other
side of the stage. The following equations for Ry are taken from Hatheway;24 the

values are from our stage.

Nonparallel neutral axes Ry =
− 3αTz

2

4SL

 = α − 3(0.75cm)2

4(16.13cm)(7.62cm)
 = -0.00343 α Outer

rectangle

 = α − 3(0.75cm)2

4(9.98cm)(7.62cm)
 = -0.00555 α Inner

rectangle

Nonparallel principal axes: Ry =
βTz

S

 =
β(0.75cm)
16.13cm

 = 0.0465 β Outer rectangle

 =
β(0.75cm)

9.98cm
 = 0.0752 β Inner rectangle

46

where

Ry = pitch angle

α = angle between neutral axes

β = angle between principal axes

Tz =
stage travel dis tance

2
 (stage travel is shared equally

between inner and outer rectangles)

S = span between flexures

L = flexure length

Note that the coefficients for the angles β exceed those of the angles α by about
13 times and are of opposite sign; if the error angles α and β are approximately
equal, then the total pitch will be dominated by error due to nonparallel principal
axes, i.e. β. In fact, the α's were much smaller than the β's, as shown below.

The error angles α and β are calculated from measurements made by the
Coordinate Measuring Machine (CMM) at LBNL. This instrument can measure
position with a resolution of 3 µm. The flexure mechanism was set on the
CMM's optical table and fiducialized to create a lab reference frame. (Fiducial
marks are reference marks on the flexure mechanism whose positions are
known. The rest of the structures (hinges, beams, frame) are then supposed to
have known coordinates in a Cartesian reference frame, within their respective
tolerances.) Then the positions of the top and bottom of the flexures were
compared. The difference between the two divided by the thickness of the
flexure (2.000") gave the angles α and β.

A worst-case calculation using Hatheway’s theory gives the tolerance for the
machining of the flexure mechanism. Using the case of nonparallel principal
axes for the inner rectangle, we get

47

β= tolerance
2.000"

=
Ry

0.0752

or

tolerance = (1µrad)(2.000")
0.0752

 = 0.00003”

However, the manufacturer could not give us this tolerance. The best he could
do was to offer a tolerance of 0.0003”. When the stage was measured with the
CMM, we found that instead of meeting the requested tolerances of 0.0003", the
flexures were out of tolerance by as much as 0.0035", and instead of the errors
being randomly distributed among the sixteen flexures, the largest errors were in
the same direction along the principal axes.25 When the angles from the CMM
measurements were plugged into the Hatheway model, the calculated pitch
agreed with the measured pitch to within 10%.

Measurement of pitch during stage motion
We used a µ-Radian Instruments MRA-240 autocollimator in making pitch
measurements of the stage. It has a range of three meters and an angular
resolution of 0.1 arcsecond, or about 0.5 µrad. An autocollimator works in much
the same way as the Shack interferometer, described above. Referring to figure
19, a bright light serves as a source. (Although it need not be either coherent or
monochromatic, it does have to be bright enough to traverse twice the distance
between the beamsplitter and the test surface and interfere at the measuring
reticle. The autocollimator we have uses an ultra-bright LED as its source.) The
light is then transmitted through two condensing lenses that are used to
maximize both the intensity and uniformity of the light directed through the
projection reticle in focal plane P1.

48

Figure 19: Autocollimator schematic. Outbound rays are indicated by solid
lines, reflected rays by dashed lines. If θ = 0, the reflected rays would
follow the paths of the outbound rays in reverse, reflect from the
beamsplitter, and focus on the measuring reticle at x = 0. For θ ? 0, the
returning rays focus a distance x = 2θ fl away. (Schematic courtesy
Davidson Optronics.)

The beam is transmitted through the beamsplitter and collimated by the objective
lens. After being reflected by a test mirror, light re-enters the autocollimator and
is focused by the objective lens. The return image appears in sharp focus on the
measuring reticle in focal plane P2 after being redirected 90° by the beamsplitter.

Note that since the returning beam is focused by the same optics that collimated
it in the first place, there will not be any dependence of the focal point upon the
distance between the source and the image. The focal plane can be either an
eyepiece or a CCD. The latter is used in our instrument.

If the test mirror has an angle θ with respect to the optical axis, the returning
beam will focus at a point on P2 a distance X from the central ray, given by

X = 2θ fL
where fL is the focal length of the objective lens. From the equation it is

apparent that X is independent of the distance between the instrument and the
reflecting surface. X is the centroid of the spot on the CCD.

49

We used the autocollimator in measuring stage pitch by reflecting its light from
the lower mirror mounted below the stage. (The mirror mount for the stage
consists of a piece of aluminum about 4” x 2” x 1/2”. There are two circular
cutouts 1” in diameter, in which two circular mirrors may be mounted. The upper
mirror is coaxial with the driveshaft and the lower mirror sticks down below the
stage at the same distance from the drive axis that the x-ray mirrors are above
the axis. Originally, the lower mirror would have been used with a second laser
positioning system to measure Abbé error, but we decided that was not worth the
$15,000 for another laser positioning system.) The upper mirror was needed for
the laser interferometer to index position. Tilt measurements were made
throughout the range of motion of the stage. We found that the stage tilted by
more than 125 µrad over its range, as compared with the desired pitch of = 0.5
µrad (see p. 17). The tilt was linear with respect to distance traveled, and was
quite reproducible.

Rectification
Discussion of the tilt in light of the Hatheway theory, and considering that the
error angles β were all in the same direction led to a suggestion: could we
possibly correct for the dominant error by introducing a compensating tilt against
the β error? We decided to cut two slits between the frame and hinges (see
figure 17). The slits were cut from the top of the frame to within 1/2" of the
bottom, thus providing a hinge that could be opened up. Holes were drilled at
each end of the two slits to accommodate taper pins. It was the taper pins that
would provide the adjustment to the angular error. They were threaded at one
end; as they were screwed in using a nut, the taper pushed against the upper
end of the hole, opening the slit. The tilt was measured after each careful
adjustment. By this method, the tilt of the stage was reduced from greater than
125 µrad to less than 0.5 µrad rms! The tilt adjustment has remained stable for
over two years.

50

Figure 20: Correction of stage tilt with taper pin adjustment

Blue trace -- underadjustment
Red trace -- overadjustment
Black trace -- correct adjustment

Figure 21: Expanded plot of stage tilt after correction. The pitch error has
been reduced to 0.38 µrad, rms.

51

Measurement and rectification of vibration and stick-slip

Explanation of problem and data

Mechanical vibrations can be a problem if they produce Abbé errors in the
frequency range of interest (at a stage motion of ~15 µm/sec the x-ray fringes
are coming by the detector at 1 kHz). Stick-slip excites vibrational modes in
much the same way as striking a bell with a hammer excites the bell's
harmonics; a square-like impulse in the time domain transforms into a sum of
frequency peaks in the inverse frequency domain. Solving the stick-slip problem
helps greatly in minimizing the vibration problem.

Abbé error in position measurement is the result of rotation of a rigid body
around the point of measurement. In our case, we want to measure the position
of the x-ray beam. The actual position measurement is made by reflecting laser
light from a mirror whose surface is perpendicular to the axis of motion. The
laser beam is collinear with the driveshaft axis. The x-ray beam strikes the x-ray
mirrors about 67 mm above the driveshaft axis, so a pitch angle of 0.5 µrad
would produce a position error of 34 nm. However, a constant error is not a
problem; it would be subtracted out over the range of travel. What is a problem
is the oscillation of position error about the "true" position. Such oscillations are
measured as noise, and if the oscillation frequency is in the range of interest the
vibration may significantly degrade the signal to noise ratio.

Stick-slip was measured by starting the piston moving at some reasonable
speed, say 20 µm/sec, and measuring the position as a function of time. The
result is a line, but any small perturbations such as electronic noise, stick-slip,
mechanical vibrations, and nonlinear optics are not visible unless the gross
trend is subtracted. So that’s what we did. Then we took a Fourier transform of
the result and looked for peaks.

The following graphs illustrate our methods.

52

6.680

6.675

6.670

6.665

D
is

pl
ac

em
en

t o
f d

riv
es

ha
ft

(
µm

)

0.60.50.40.30.20.10.0
Time (s)

Figure 22: The stage is moving in a negative direction at -31.3 µm / sec,
sample rate is 100,000 samples / sec, and 65536 samples were taken.

8

4

0

-4

D
is

pl
ac

em
en

t f
ro

m
 L

in
ea

r F
it

(n
m

)

0.60.50.40.30.20.10.0
Time (sec)

Thin O-rings-4

0

4

D
is

pl
ac

em
en

t f
ro

m
 L

in
ea

r F
it

(n
m

)

0.60.50.40.30.20.10.0
Time (sec)

Fat O-rings

Figure 23: These are the same data (of figure 22) after they were fit with a
line and that line was subtracted from them. The data on the left was taken
when the fat (3/16” diameter) O-rings were installed as seals in the piston.
We can see that the small perturbations have a peak-to-peak amplitude of 4
nm. The data on the right were taken with thin (1/16” diameter) O-rings
installed. The peak-to-peak amplitude is about 3 nm.

53

1.2

0.8

0.4

0.0

A
m

pl
itu

de
 (n

m
, r

m
s)

2000150010005000
Hz

1.2

0.8

0.4

0.0

A
m

pl
itu

de
 (r

m
s,

 n
m

)

2000150010005000
Hz

Figure 24: The greatest concern is the frequency of mechanical vibrations,
which can affect the signal-to-noise ratio. A power spectrum of the
linearized data is plotted here; we can see that the largest vibrations are
below 500 Hz, with amplitudes of less than 1 nm except for the one at 2 Hz,
corresponding to the stick-slip.

Rectification
Once the mechanical vibrations were identified we set to work reducing them.
Two considerations drove our development efforts: natural vibrational modes
and stick-slip. One of the reasons for choosing cartwheel flexures and maraging
steel was the stiffness of the flexures; this would force the locus of mechanical
vibrations toward the high end of the frequency spectrum so they could be
filtered out using digital filtering. This worked; most of the highest peaks occur
above 10 kHz.

The stick-slip was dealt with by concentrating on the points of contact between
the driveshaft and the piston housing. Seals are necessary on a hydraulic
piston to keep the hydraulic fluid inside, so they become one of the sliding
surfaces, the other being the driveshaft. A much smaller piston and stage
prototype was built before I joined the team, and one of the practical discoveries
was the need to keep both sides of the seal wetted with lubricant. Therefore a
plastic bellows was added on the outside of the piston to retain a reservoir of oil
there. Buna (synthetic rubber) O-rings, Teflon seals, and even no seals were
tested for their stick-slip. The least stick-slip was observed when no seals were
used (the driveshaft rode on the Teflon pressure plates used to keep the seals in
place). However, the air pressure necessary to move the piston forced hydraulic
fluid into the bellows, deforming them and threatening to rupture them. The
prospect of mineral oil squirting all over the x-ray optics suggested a different

54

course of action. The Teflon seals did not work either. Teflon has a very small
coefficient of friction, but it is not elastic, so its sealing pressure was provided by
a loose coil of spring steel. The added pressure produced unacceptable stick-
slip. We settled on thin O-rings, 1/16" thick. The above graphs compare the
differences between fat and thin O-rings. It can be seen that the thin O-rings
produce less than half the amplitude of stick-slip of the fat O-rings., and many
fewer peaks are seen.

Alignment of the beamsplitters
The alignment of the beamsplitters with the mirrors was a technical problem.
Two attempts were made to solve it. The ideal goal of alignment is to recombine
the two beams of light at the focal plane (detector) without shear (transverse
displacement) or relative angle. The practicable goal, to come as close as
possible to the ideal, is dictated by the minimum visibility necessary to observe
the features (absorption peak energies and their linewidths) predicted by theory.
Excessive errors in shear or relative angle reduce the signal to noise ratio so
that the interference fringes get washed out. These tolerances, derived earlier,
are: shear < 200 µm and relative angle < 1.0 µrad (see p. 17, above).

Provision for beamsplitter adjustments was made by holding each beamsplitter
with three screws on one side, and three spring-loaded screws opposite them on
the other side (see figure 25). Three points in space uniquely define a plane,
and the placement of the screws was astutely chosen to follow an x-y coordinate
system where one screw is at the origin, the second along a line parallel to the
long axis of the beamsplitter, and the third along a line parallel to the short axis.
Thus by adjusting the second and third screws, the yaw and roll, respectively, of
the beamsplitter could be adjusted independently. In practice, the first screw was
turned a set amount, to translate a beamsplitter, and the roll and yaw were
adjusted for the best interference pattern. Both beamsplitters had screws with
80 threads per inch pitches, so 1/4 turn on the screw would move it by about 80
µm. The upstream beamsplitter had this simple mechanism; screws on the
downstream beamsplitter were coupled to the beamsplitter via flexible steel
levers so that 1/4 turn on the 80 TPI screw was scaled down to ~1µm.

55

Figure 25: Contact points on a beamsplitter. The adjustment screws
contacted the beamsplitter at the three black spots. Adjusting only the
topmost screw changes the roll of the beamsplitter around the beam
(which is being split at the grating represented by the black rectangle),
while adjusting the rightmost screw changes the yaw of the beamsplitter.

We used HeNe laser light at first to provide a coherent source for coarse
alignment, then substituted an incoherent neon lamp for finer adjustment. A
CCD camera served as the human feedback amplifier. The person making the
adjustment watched the CCD monitor and used a hex wrench to turn a screw.
The angle and shape of the fringes give an idea of the direction one needs to
adjust the screws. The aim is to get less than one fringe on the monitor.
Horizontal lines mean the roll needs to be adjusted, and vertical lines mean the
yaw needs adjustment. When the “best” adjustment is done, the camera is
removed and the photodiode put in place. Then we take a spectrum of the light
and look for good zero path length difference (ZPD) contrast. The shape is a
sinusoid that grows to a maximum at ZPD and then dies out (see figure 26).

56

Figure 26 Alignment scan using neon light.

This manual adjustment served to get the beamsplitters well enough aligned to
take a partially coherent neon interferogram. Within at most a few days, the
alignment drifted off; the screws holding the beamsplitters’ positions had moved
enough to lose the alignment. Since pumping the vacuum chamber down to an
acceptable pressure (~10-5 torr) takes several days, realigning the beamsplitters
is often necessary under vacuum, and setting up and doing the experiment will
take an unknown amount of time, this inability to hold alignment was
unacceptable.

We rethought the adjustment mechanism and designed a computer-controlled
alignment system consisting of picomotors and Linear Variable Differential
Transformers (LVDTs)26. Picomotors are piezoelectrically-driven screws made
by New Focus, Inc. When actuated, a picomotor turns its lead screw with an
angular resolution of <0.6 µrad, or <30 nm linear motion with an 80 TPI screw
pitch. 27 In practice, the picomotor’s “fingers” often stick to the lead screw when
they should release, so the screw does not turn with the reliability of a stepper
motor. We therefore added, with the help of Paul Denham of the Center for X-
Ray Optics at LBNL, a position-measurement system based on Macro Sensors’
LVDTs (model no. CD 375-050) and Analog Devices’ AD698 LVDT Signal

57

Conditioner. An LVDT measures position using three coils along a central axis,
and a magnetically permeable tube within the bore of the coils called the core.
The center coil is the primary winding, and the two coils on either side of it are
secondary windings. The primary is energized with an AC signal, and its
resultant magnetic field is coupled to the secondaries via the movable core. At
its null position, the core couples equal magnetic flux to both secondaries, so the
induced potential is zero. If the core moves closer to secondary #1 than
secondary #2, more magnetic flux will be coupled to #1 than #2, and the induced
potential V1 > V2. The potential difference V1 - V2 is then converted to a DC
voltage by the signal controller and sent to Hewlett-Packard’s Data
Acquisition/Switch Unit (model no. HP 34970A). This last instrument has an on-
board digital multimeter to read the LVDT voltages, a switching unit to control
the picomotors, and a GPIB interface so we can control it from our workstation.

This system provided very stable, accurate, and repeatable performance in
aligning the beamsplitters. The system was calibrated with the autocollimator
described above. The LVDTs have a sensitivity of ~300 nm/mV. The coarse
adjustment picomotors have a resolution of 14 µrad on the yaw axis and 40 µrad
on the roll axis. The fine adjustment picomotors (attached to the flexible levers)
have a resolution of 0.21 µrad on the yaw axis and 0.27 µrad on the roll axis.
Figure 26 shows an alignment scan using incoherent neon light.

Conclusions

This paper has covered the design and construction of a Fourier transform soft
x-ray interferometer at Lawrence Berkeley National Laboratory. The selection of
the mechanical, optical, and data acquisition subsystems was driven by the
requirements of high energy resolution and coherent recombination of the
separated x-ray beams. In particular, introducing a 2 cm. path length difference
between the separated x-ray beams while maintaining coherence posed
technical problems such as vibration, tilt correction and alignment whose
solutions required experience and careful thought. This was a deceptively
difficult instrument to build, and it was possible only with the combined efforts of
knowledgeable engineers, scientists, and technicians.

58

The interferometer has met its specifications and held them for two years. In
itself, this is quite an accomplishment, given the extremely tight manufacturing
tolerances. It would appear the only thing left to do is to perform the
autoionization experiment for which the instrument was designed. While an
interferogram using synchrotron light has been produced, so far energy peaks
have been observed only in the range of 0 - 10 eV. The scientists now working
on the project are following several paths toward a solution. Among them are:

1. Adding fluorescent detectors throughout the path of the x-ray beam to track its
progress, as an aid in alignment.
2. Replacing the mirror for switching the x-ray beam from the synchrotron to
different endstations. (The other endstations use the beam in a direct line from
the monochromator. Our endstation is th only one that uses the switching mirror,
which could degrade the beam if it is corroded.)
3. Modifying the data acquisition software to take multiple scans and simplify the
filtering of the raw data.

The goal of the interferometer, producing high-resolution double-excitation
helium spectra, has exciting implications in many-body physics, chaos, and
electron correlation theory. The successful conclusion of its construction will be
just the beginning of a long and productive life.

Appendix 1: Derivation of Geometric Factor Used in Calculating Path
Length Difference
The following discussion pertains to movement of the mirrors with respect to the
beamsplitters. In the diagram a mirror whose surface is at line 2 moves along
the y axis to line 2′. Light entering the interferometer is reflected along line 1 at
position y01 and again at point P. When the mirror moves to 2′, the light
continues to P′ before it is reflected. Thus the path the light travels before it
arrives at center line C loses distance ∆x and gains distance r.

59

∆X

r

Y

X

2

2'

1

P

P'

BS1
y01

y02

y02'

α

β

Figure A: Path length change due to moving one of the mirrors. The
dashed line represents the position of the mirror before moving, the solid
line represents the position afterwards. Unprimed variables before, primed
after.

The equation for line 1 is
y1 = x1 tan α + y01

and for line 2 it is
y2 = x2 tan β + y02

Now solve the two equations simultaneously to find the intersection P.
yP = (tan α - tan β)x + y01 (A1)

Now if we move line 2 along the y axis to a new position 2′, we get for the
intersection P′

yp' = (tan α - tan β)x′ + y01 (A2)

Subtracting A1 from A2 gives
yP' - yP = (tan α - tan β)(x′ - x)

or
∆x =

∆ y
tan α − tan β

60

This ∆x is the magnitude of the path length that is lost when the mirrors move by
∆y. The magnitude of the path length that is gained by the same motion is
gained along the hypotenuse of the triangle P′PQ, i.e. r is given by (cf. figure A)

r = ∆y

1
sin α

and the change in path length by
PLD1 = r - ∆x

 = ∆y

1
sin α

− 1
tan α − tanβ

where the subscript 1 indicates that this is the path length change for one leg of
the light path through the interferometer. Referring to figure 4 in the text, we can
see that the total path length difference between the two beams results from the
lengthening of one beam and the shortening of the other beam by the same
amount. Diagram A corresponds to the upper left quadrant of the diagrams in
figure 4. Plugging in the values for our interferometer,
α = 20°, β = 10°, we get

PLD1 = 0.342 ∆y
and

PLDTOTAL = 4*PLD1 = 1.368 ∆y

Appendix 2: Software Descriptions

Dsp Program (dspacq.c)

The dsp program, written in C and assembly, acquires data from three data
channels (viz. position and two x-ray intensity signals), and sends them to the
VME controller as one of several streams: raw or filtered, binned or unbinned, or
normalized signal data. Raw data means a time series capture of signal or
position. Filtered data are raw data processed by the dsp through a finite
impulse response (FIR) algorithm to eliminate noise. Binned data can be
represented as a signal vs. position plot; although they are acquired separately,
the x-ray signal depends upon the stage position. We can pick a position bin
size and average all the x-ray signals that fall into that bin. Therefore it is
possible to obtain a higher position resolution than that published by the
manufacturer. Normalized signal data are data from the position-varying x-ray

61

channel divided by the data from the reference x-ray channel. This is done to
eliminate changes in the x-ray signal external to the experimental setup, such as
flux variations or motion of the beam on the detector.

The following description pertains to "dspacq.c" as it existed on 11/29/98. I will
use the commenting in that version as section headers for the DSP's setup and
operation. I will not describe variable declarations, allocation of memory, and
other such housekeeping matters. DSP code itself is in boldface; my
description is in normal type.

There are two functions defined in dspacq.c: "main" and "c_int05". "Main" sets
up the various registers on the two VME carrier boards and then enters an
infinite while loop. The while loop is only interrupted by the interrupt service
routine (ISR) c_int05.

/* Do Master Cycle in order to be the VMEbus master */

 i = Read(VME_CONTROL); /* Save VME master cycle register */

 Write(VME_CONTROL, 0X00); /* Set VME master cycle register */

This is necessary to acquire control of the VME bus. VME_CONTROL is a
register in the VMEbus Interface Control (VIC) chip that, as one function, sets
the control of the VME bus to be the VIC chip on the dsp carrier board instead
of the VIC chip on the MVME167.

/********************* C40 stuff *****************************/

/****************** Set up interrupts ************************/

Do_IACK();

This is a macro defined in the header file that sends an "interrupt acknowledged"
signal to

62

the DSP control register. Since we have not yet started the program running,
this action

should not be necessary. However, the state of all hardware registers is
undefined at pro-

gram startup, so they must be initialized to a known state.

set_ivtp(IVTP_DEFAULT);

for(i=0; i<0x40;i++)

*(unsigned int *)(0x2ffe00 + i) = 0;

install_int_vector((void *)c_int05,0x05); /* Set ISR to go when we get an
interrupt */

The interrupt vector table (IVT) is a 64-word array in memory containing pointers
to all the

available ISRs. The set_ivtp macro sets up this array at a page boundary, in this
case IVTP_DEFAULT, defined to be a pointer to the location 0x2ffe00. The for
statement zeroes that array, and the install_int_vector macro writes the pointer
to the ISR c_int05 into the interrupt vector table.

/* Set up IIF */

Release_IIOF();

Enable_IIOF_CV2(2, "level"); /* Enable IIOF2 to be level-triggered unlatched
interrupt line */

The interrupt flag register (iif) controls the character of the interrupts. There are
three interrupt lines that may be configured as either interrupts or general-
purpose I/O lines. The latter may have such functions as timing, motor control,
or anything else that uses a TTL signal. An interrupt may be either edge-
triggered or level-triggered, and may either be latched into the interrupt flag
register until explicitly released by a command, or released by a read or write of

63

a data register (unlatched). Here, we first release the Interrupt/Input/Output
lines for reconfiguration, and then set line IIOF2 to be level-triggered, unlatched.
This function call also enables the interrupt.

/***********************DMCB stuff ***************************/

The Daughter Module Carrier Board (DMCB) is configured by writing to registers
that are offset from the dBEX32 base address 0xB0000000. The first 64 words
are used to configure the four Application ModulE Link Interface Adapter
(AMELIA) chips that control the four Daughter Module (DM) sites on the DMCB.
The next six words configure six registers that apply to the DMCB as a whole.

.

/* Reset the AMELIA2's on the DM carrier board, then release them */

*DMCB_RESET_REG = 0x0f;

*DMCB_RESET_REG = 0x00;

 /* Reset the DM carrier board */

*DMCB_ISR_CTRL = 0;

*DMCB_XRDY_REG = 0;

*DMCB_SYNC_REG = 0;

The above registers are four of the six general purpose register available on the
Daughter Module Carrier Board (DMCB). The 4-bit reset register, as its name
implies, resets the AMELIA2 chips that are mapped into it; the corresponding
AMELIA2 is reset when the bit is set to 1 and then reset to 0. The interrupt
control register (ISR_CTRL) is an 8-bit register used to select which of the three
interrupt lines, XINTA , XINTB , or XINTC , will be used for each daughter
module, A, B, C, or D. Each module is controlled by two of the eight bits; thus
setting ISR_CTRL = 0x80 will assign XINTB to daughter module B. The
synchronization register allows a timer on one of the daughter modules (DM) to
control the timing on any of the others. We are using only one DM, so this is set
to zero.

64

/* Configure the DM Site's AMELIA2 (and therefore the DM) */

WriteUL(DMCB_SITE_A + AMELIA_CTR, D16DS_CTR);

WriteUL(DMCB_SITE_A + AMELIA_CMR, D16DS_CMR);

WriteUL(DMCB_SITE_A + AMELIA_TMR1, D16DS_TMR1);

The sample frequency of the ADC is set by configuring three registers on the
appropriate AMELIA2 chip. The user must first select the clock source and then
prescale (divide) its frequency by some factor to arrive at the sample frequency.
The User Control Register (CTR) is used to select the clock source and prescale
its input into the Timer 1 (TMR1) register. Two clock frequencies are available
from crystal oscillators on the DMCB: 12.288 MHz (TCLK_0) and 11.2896 MHz
(TCLK_1). Bits 8 and 9 select the clock source: we use TCLK_0. Prescaling
these frequencies to accommodate lower frequency DMs is accomplished by
setting bits 6 and 7. We use a prescaling factor of 1.

The AMELIA Control Register (CMR) is used to configure sixteen control lines
whose functions are determined by what DM is installed. Since the AM/D16SA
has ADC and DAC channels, they can be operated at different frequencies.
Bits 4 and 5 of this register select the sample clock for the input (ADC) and
output (DAC) channels. We use the same sample clock for the ADC and DAC,
TCLK_0, so these bits are both set to 1. Bit 7 is used to determine whether the
current DM is the timer master of the other DMs, or a slave to another timer
master. This provides synchronization of sampling. We have only one DM on
the DMCB, so our DM is set as a master.

TMR1 uses the prescaling of CTR to determine the sampling frequency. Its
value is given by the equation

TMR110 = 65537 - Fclk

Fs

where Fclk = Frequency of the prescaled selected clock

65

and FS = Desired sample rate

This register can be set on the fly, and we do so whenever we want to change
the sample frequency. The subtlety here is that TMR1 is an integer, not a
floating point number. so the above equation truncates the result of the right
side to an integer. The actual sample frequency is then given by

FS =
Fclk

65537 − TMR1

We deal with this detail at the LabVIEW level: when the user inputs a desired
sample frequency, the above calculation is performed and the actual calculated
frequency is displayed for the user's contemplation.

WriteUL(DMCB_SITE_A + AMELIA_CFR, D16DS_CFR);

The configuration register is for configuring the data transfer interface between
AMELIA2 and the DM. The manual did not explain this interface; it merely
stated that the magic value 0x8dff was required to establish valid data
communications.

WriteUL(DMCB_SITE_A + AMELIA_IMR, D16DS_IMR);

The interrupt mask register dictates when an interrupt is sent to the C40 via the
dBEX interface. An interrupt may be sent either when an input data register is
full (i.e. an analog-to-digital conversion has been done) or an output data
register is empty (i.e. a digital-to-analog conversion has been done). Setting bits
7 and 14, respectively, unmasks these two interrupts. We set the interrupt to be
sent when an analog-to-digital conversion has been done.

/* Configure interrupts */

*DMCB_ISR_CTRL |= (XINTB_EN << SEL_SITE_A);

*DMCB_ISR_CTRL |= (NO_INT_EN << SEL_SITE_B);

66

*DMCB_ISR_CTRL |= (NO_INT_EN << SEL_SITE_C);

*DMCB_ISR_CTRL |= (NO_INT_EN << SEL_SITE_D);

Here we set the DMCB interrupt control register to configure interrupts for the
four DM sites; site A is the only one with a DM in it, so interrupt B is enabled for
it, and interrupts are disabled for the other three sites.

/* Clear the FIFOS of invalid data */

d = ReadUL(DMCB_SITE_A + AMELIA_DATA0_IN);

d = ReadUL(DMCB_SITE_A + AMELIA_DATA1_IN);

WriteUL(DMCB_SITE_A + AMELIA_DATA0_OUT, 0X0);

WriteUL(DMCB_SITE_A + AMELIA_DATA1_OUT, 0X0);

The ADC and DAC data registers start out with undefined data in them, so they
are read and written to clear them.

/**************Clear all interrupts *****************************/

/* On DMCB */

 d = ReadUL(DMCB_SITE_A + AMELIA_ISR);

Clear the AMELIA2 interrupt service register by reading it.

/* Global Interrupt Enable and Cache Enable */

 CACHE_ON();

 INT_ENABLE();

Back on the dsp, the last thing we have to do before entering the infinite while
loop that is the usual operating mode, is to enable the instruction cache that
holds up to 128 words of past instructions for faster processing, and to globally
enable all interrupts coming into the dsp.

67

/************ MAIN NON-INTERRUPT LOOP ************/

while(1) {

 if(++counter1 > 100000)

 {TOGGLE(LED3);counter1 = 0;}

There are eight light-emitting diodes on the front panel of the DBV42 carrier
board that the programmer may use for debugging. TOGGLE is a macro that
exclusively ORs the value in the LED register with itself to switch its state. It is
used here to indicate that the non-interrupt loop is running and isn't stuck.

Description of one channel of data

It may be helpful to future experimenters to explain the software by an example
how data is acquired, processed, and sent up the chain of hardware to the user
interface. I will choose the data channel "Raw Signal 1 binned by Raw HP." As
the name denotes, the data in this channel consists of an array of numbers that
represent raw (rather than digitally filtered) measurements of x-ray intensity from
the interferogram detector (rather than the reference detector) that have been
averaged into position bins whose size is set by the user. The position used for
each signal datum is unfiltered data from the HP laser interferometer.

The use of flags is designed to minimize accesses (hits) on the VME bus. The
interrupt service routine and non-interrupt loop run asynchronously, with the ISR
having priority because of its time-critical task, namely taking data from their
registers and putting them in their proper arrays before the next timeout.
However, the non-interrupt loop has the responsibilities of processing the arrays
and sending them on to the 167 before they can be refilled by the ISR. The
tasks of the two blocks are therefore interdependent, so they must communicate
with each other via flags.

68

Flags are also used to communicate from the program running on the 167,
VxServer, to the dsp program, dspacq. When the latter wants a particular set of
data, it gets the array parameters from the LabVIEW user interface and writes
them into local memory. Then it sets a local flag register whose bits correspond
to the data streams that the dsp program can provide. During its initialization,
VxServer has already mapped local memory addresses into VMEbus addresses,
so dspacq knows where the flag registers and data arrays are. (VxServer could
also write its flag register to the dsp, but that produces bus conflicts when the
dsp also hits the VMEbus while doing something else.)

The order in which the flag registers are tested is important; testing registers
locally is faster than across the VMEbus.

One final note: the dsp has two separate buses; local and global. They access
different areas of memory. The ISR fills arrays in one area, sets a flag, and
starts filling the other area. The non-interrupt loop uses DMA to move data from
the first area while the ISR is filling the other one. This is done to prevent bus
conflicts on the dsp. I will describe only the code for the local array; the global
array is serviced by similar code.

/* signal 1 raw binned by HP Raw */

if(S1HPLocalTest == FULL) { /*local buffer is full?*/

Here we test whether the local buffer flag has been set by the ISR (see below).

if(channel_go&S1HP_FLAG) { /* 167 wants more binned signal 1 data */

channel_go is the local copy of the data stream request register that is set by
VxServer in its local memory. This register is read from the 167 in the ISR (see

69

below). Each bit corresponds to a different data stream. S1HP_FLAG is a mask
for "Signal 1 binned by Raw HP." A TRUE condition means that the 167 wants
this data.

if (ReadUL(VME_BASE+S1HP_BFLAG/4)==EMPTY) { /*167 buffer empty? */

This test queries a flag in 167 memory that is set after an array of data has been
written to a file that is accessed by LabVIEW for displaying the data.

 S1HPBinSize = 1.0 / Read(VME_BASE + (S1HP_BINSIZE/4));

Get the bin size (i.e. distance in HP steps). Successive bins produce an index
into an array. Each signal datum is acquired simultaneously with a position
datum. We subtract the least position from the current position in the HP
position array and divide the result by the bin size to get the index into the
binned signal array. The current signal datum is then added to the other signal
data at that index, and after the whole array has been thusly binned, the
summed value at each index is divided by the number of points that have been
summed to produce an average.

 LeastPosLocal = 0xEFFFFFFF;

 GreatestBinLocal = 0;

Set the least position in the current position array and the greatest bin index to
their extremes.

/* Find minimum position within safe distance of first position (assume
positions are monotonically increasing)*/

70

for(i=0;i<SAFE_DIST;i++)

 LeastPosLocal =(HPLocal[i] < LeastPosLocal) ? HPLocal[i] :
LeastPosLocal;

We use stage position to form an index into the binned signal array. Since
arrays begin with index zero, we look for the least position so that we will always
get a nonnegative number when we subtract it from the current position. We
take position and signal data with the stage traveling only in the positive
direction, so successive positions should form a monotonically increasing series.
But the stage jumps around, and there is mechanical and electrical noise in the
system, so we have picked an arbitrary safe distance from the zeroth position
within which the least position should reside.

/* Bin local signal 1 data*/

for(i=0; i<RAW_ARRAY_SIZE;i++){

 Bin = (int)(S1HPBinSize * (HPLocal[i] - LeastPosLocal));

We enter the binning loop and calculate the bin into which we add the i-th signal
datum. The reader may have noticed that when the bin size was read from the
167, above, that its inverse was calculated. The dsp performs a multiplication
faster than a division, and it is important to maximize the processing speed of
operations performed in loops.

 if(Bin < RAW_ARRAY_SIZE && Bin >= 0) {

This condition eliminates glitches (i.e. Bin > RAW_ARRAY_SIZE or Bin < 0).

 GreatestBinLocal = (GreatestBinLocal > Bin) ? GreatestBinLocal : Bin;

71

If the bin size is greater than 1, the binned array will have fewer elements than
the corresponding raw array, so we have to calculate how many points to send
on to the 167. This statement will find that number after going through the entire
array.

 S1HPLocal[Bin] += S1Local[i];

 ++SamplesInS1HPLocal[Bin];

 }

Add the current i-th element of the raw signal array to the calculated bin element
of the binned signal array. Increment the integer array that will be used later to
average the signal.

 else if(Bin >= RAW_ARRAY_SIZE) {

 GreatestBinLocal = RAW_ARRAY_SIZE - 1;

 TOGGLE(LED2);

 }

 else TOGGLE(LED2);

}

Toggle a front panel LED if there are any glitches, but don't include these points
in the binned array.

/* Data averaging for local Signal 1 */

for(i=0; i<= GreatestBinLocal; i++) {

 if(SamplesInS1HPLocal[i] == 0)

 S1HPLocal[i] = 0;

 else S1HPLocal[i] /= SamplesInS1HPLocal[i];

 }

72

Summed data points within each bin are divided by the number of points to get
an average.

 Write(VME_BASE + S1HPSTARTPOS_PTR/4, LeastPosLocal);

 Write(VME_BASE + GREATESTBIN_PTR/4, GreatestBinLocal);

 movem((int)S1HPLocal, (int)(VME_BASE + S1PTR/4),
GreatestBinLocal+1);

Send the least position in the current array, the number of points, and the x-ray
signal data to 167 memory.

 S1HPLocalTest = EMPTY;

 for(i=0; i<=GreatestBinLocal; i++) S1HPLocal[i] =
SamplesInS1HPLocal[i] = 0;

 vmeSetIntStatusID(VICVME_INTLVL,VICVME_INTVEC_S1HP);/* send
an interrupt to the vmebus that the buffer is moved*/

 vmeSendAsyncInterrupt(VICVME_INTLVL);

Zero flags and buffers. Send an interrupt to the 167 controller to signal it that a
buffer-full of data has been sent.

 }

 } else S1HPLocalTest = EMPTY;

 }

} /*end while(1) */

 }/* End of main */

/*************INTERRUPT SERVICE ROUTINE*******************/

int c_int05 (void)

73

{

 unsigned long d;

 d = ReadUL(DMCB_SITE_A + AMELIA_ISR);

Read the interrupt status register, which must be done to reset the interrupt
timer. Otherwise, the dsp would continually service the ISR and never reenter
the infinite while loop.

 /* Acquire data */

 if (RawArrayFill==1) {

(Get global position and data points here; the code is similar to that for local
data, described next.)

 } else {

 HPLocal[index]= HPreg_ptr->pos1_auto_smpl;

 S1Local[index] = Read(DMCB_SITE_A + AMELIA_DATA0_IN);

The position datum resides in a 32-bit register on the HP laser axis board. It is
accessed via the VME backplane. X-ray data resides in a 32-bit register in the
AMELIA interface chip. It is accessed via the internal dBEX32 bus.

 S1Local[index] <<= 16;/* shift all the way left to preserve the sign bit*/

 S1Local[index] >>= 11;/* now drag the sign bit right, but leave 5 bits for
resolution improvement */

 }

Even though data is sent as 32-bit integers, the ADC provides only a twos-
complement 16-bit integer. We can use the extra 16 bits to improve resolution

74

when binning the data by left-shifting the data before averaging. The data is
then sent to the 167 as 32-bit integers instead of floating-point numbers. Right-
shifting drags the MSB to the right, so for a signed 16-bit number, we first left-
shift by 16 bits to place the sign bit in the MSB, and then left-shift to drag that bit
to the right. The result is a twos-complement signed 32-bit integer.

 if(++index == RAW_ARRAY_SIZE) { /* handle full buffer */

 channel_go=ReadUL(VME_BASE + CHANNEL_GO_REGISTER/4); /*
check which channels are enabled */

A counter (index) is incremented every time the interrupt is serviced (or,
equivalently, every time a data point is acquired). When the index reaches the
size of the raw array buffers, we need to signal the non-interrupt loop that we
have a full array and to start crunching numbers. Also we need to tell the ISR
itself that the next time through it should store the data in the other area of
memory. The channel go register is a bit-mapped flag register residing in
controller (i.e. 167) memory. We set its bits at the 167 level whenever VxServer
gets a request for data from the LabVIEW user interface.

 TOGGLE(LED7);

Tell us that the interrupt is being serviced.

 WriteUL(DMCB_SITE_A + AMELIA_TMR1, ReadUL(VME_BASE +
ADC_RATE_DIVISOR / 4)); /* update sampling rate */

The procedure for setting the sample rate was described above. Here we read
an address in 167 memory to provide runtime changes to the sample rate.

 if(RawArrayFill == 1) { /* finished filling the Global array */

75

 HPGlobalTest=FULL; /* set flags for data processing */

 S1GlobalTest=FULL;

 S1HPGlobalTest=FULL;

The tasks of sending data to 167 memory and binning the data are done during
the non-interrupt routine; this is where we tell the pertinent code blocks that the
arrays are full.

 if (HPLocalTest==FULL || S1LocalTest==FULL ||
S1HPLocalTest==FULL) {

/* buffer overflow! */

TOGGLE(LED6);

vmeSetIntStatusID(VICVME_INTLVL,VICVME_INTVEC_RAWBUFOVFL);

vmeSendAsyncInterrupt(VICVME_INTLVL);

 }

After an array of data that must be addressed via the global bus is operated
upon and sent to the 167, its "array full" flag is reset. Here we check whether
the corresponding flag for the local bus has been reset. If it has not been reset,
the data has not yet been sent and will be overwritten by subsequent data. This
could happen if the sample frequency is high and the dsp takes too long to
process and send the data. We send an interrupt to the 167 and toggle a front
panel LED to indicate a problem.

 } else {

 HPLocalTest=FULL; /* set flags for data processing */

 S1LocalTest=FULL;

 S1HPLocalTest=FULL;

76

 if (HPGlobalTest==FULL || S1GlobalTest==FULL ||
S1HPGlobalTest==FULL) {

/* buffer overflow! */

TOGGLE(LED6);

vmeSetIntStatusID(VICVME_INTLVL,VICVME_INTVEC_RAWBUFOVFL);

vmeSendAsyncInterrupt(VICVME_INTLVL);

 }

Do the same as above for the local bus.

 }

 RawArrayFill=RawArrayFill^1; /*toggle which array is being filled */

 index = 0;

 }

}/*end of c_int05*/

VxWorks Program (VxServer.c)

In a similar fashion to the dsp program, I will describe the behavior of only one
datastream, "raw signal 1 binned by raw HP position." The main purpose of this
program is to serve as an interface between the dsp program and the user
interface. The user sends a data request from the LabVIEW user interface
(running on a Sun workstation) to VxServer (running on the MVME167 controller,
hereinafter referred to as the 167). Since the two programs reside on different
computers, the request is sent via a Remote Procedure Call (RPC). The source
code for this high-level protocol can be automatically generated by using a Unix
function "rpcgen." It is not described here more than by stating that the RPC
task server on the local machine blocks CPU execution of local functions until it
receives a properly constructed command sent from a remote computer.

Once the RPC for data acquisition is received by s1hpctrl_1, the mirror stage is
moved to the start position, the pertinent parameters for this data stream are set

77

to their values, and the S1HP flag in the channel_go register is set. The dsp
continuously polls this register, and when it sees the flag immediately starts
collecting data for that data stream.

The dsp sends an interrupt to VxServer when one of its data arrays is filled. The
applicable interrupt handler gives a semaphore (software "interrupt") to other
code that is blocking CPU execution until the semaphore is taken. That code in
turn does whatever processing is necessary and forwards the data array to the
user interface on the Sun workstation.

The following are synopses of the functions in VxServer. The first three are
tasks that are spawned in the vxWorks startup procedure. s1hpctrl_1 and
commandctrl_1 are RPCs invoked from the LabVIEW user interface, and
S1HP_hndl is the interrupt handler that services the interrupt from the dsp.

init: initialize the dsp carrier board, get VMEbus addresses for local variables
that the dsp needs to know about and send them to the dsp, configure the error
interrupt handler.

dspacq_run: download the dsp Common Object File Format (COFF) program
and start it running.

s1hpctrl_1: respond to an RPC from the user interface requesting "raw signal 1
binned by raw HP position" by opening binary files for buffering data, allocating
memory, moving the stage to its start position, and setting the channel_go flag
that the dsp monitors for determining which data to collect.

S1HP_run: set up the semaphore and dsp-to-167 interrupt, then go into an
infinite while loop that waits for the semaphore. When it takes a semaphore,
S1HP_run appends the data array to the binary file that the user interface reads.
When the entire data set has been taken the program closes the binary files and
frees memory.

78

S1HP_hndl: service the interrupt from the dsp indicating the latter has sent a
buffer-full of binned signal 1 data to 167 memory by checking to see whether the
entire set of data has been sent to the user interface. If all the data has been
sent, the channel_go register is reset. Finally, the inter-process semaphore is
given to S1HP_run.

commandctrl_1: service RPCs requesting: changes in the sample frequency,
stage position, or global data synchronization.

void init()

{
 taskPrioritySet(taskIdSelf(), 125);

vxWorks has a task manager that allocates CPU time in either a round-robin or a
prioritized mode. The programmer can select the mode and priority given to any
of his tasks. Here we give a priority of 125 to the task "init". The highest priority
is 0 and the lowest 255.

 /*******Initialize DBV42 and TIM modules **************/
 if(dbv4xLibInit()!=OK) {
 printf("dbv4xLibInit failed\n");
 exit(-1);
 }

Initialize library of functions provided by Spectrum Communications for use with
their dsp software.

 board=dbv42Create(&desc);
 if (board==NULL) {
 printf("dbv42Create failed\n");
 exit(-1);
 }

This function sets up the carrier board.

79

 tim =dbvTIMCreate(board,DBV4x_TIM_SITE_A);
 if (tim==NULL) {
 printf("dbvTIMCreate failed\n");
 exit(-1);
 }

Make sure tim site A is not already in use.

/* Get VME addresses for several variables and write them to shared
memory */

sysBusToLocalAdrs(HP10897A_addrs_type[HP_CARD],
 HP10897A_addrs_base[HP_CARD],(char **)(&HP_regs_ptr));

 /* adc rate divisor */
sysLocalToBusAdrs(VME_AM_EXT_USR_DATA,
 &adc_rate_divisor,(char**)(&tempintp));
dbv4xWriteSharedWord(board,&tempintp, ADC_RATE_DIVISOR);
 printf("ADC_RATE_DIVISOR=%d\n",adc_rate_divisor);

 /* first point of each HP array */
 sysLocalToBusAdrs(VME_AM_EXT_USR_DATA,
&HPArrayStart,&tempintp);
 dbv4xWriteSharedWord(board,&tempintp,HP_ARRAY_START);

 /* first point of each HP array */
 sysLocalToBusAdrs(VME_AM_EXT_USR_DATA,
&S1HPArrayStart,&tempintp);
 dbv4xWriteSharedWord(board,&tempintp,S1HP_ARRAY_START);

 /* number of points in each HP array */
 sysLocalToBusAdrs(VME_AM_EXT_USR_DATA, &BinNum,&tempintp);
 dbv4xWriteSharedWord(board,&tempintp,BINNUM);

 /* size of position bins */
 sysLocalToBusAdrs(VME_AM_EXT_USR_DATA, &BinSize,&tempintp);
 dbv4xWriteSharedWord(board,&tempintp,BINSIZE);

 /* channel go reg */
 sysLocalToBusAdrs(VME_AM_EXT_USR_DATA,
&channel_go_register,&tempintp);
 dbv4xWriteSharedWord(board,&tempintp,CHANNEL_GO_REGISTER);

80

The vxWorks operating system has many functions for accessing the VME bus.
Two of them provide mapping of local addresses to VMEbus addresses
(sysLocalToBusAdrs) or vice-versa (sysBusToLocalAdrs). We first declare local
variables that need to be available to a board on the VMEbus, such as the ADC
rate divisor. Then the sysLocalToBusAdrs function is executed to get the offset
of that variable's address into the address block that has been set aside for
VMEbus access. Lastly, the mapped address is written to shared memory on the
pertinent VME board. In this case, dbv4xWriteSharedWord is a Spectrum
Communications library call for writing to shared memory on the dsp carrier
board. The latter has its own mapping of the VMEbus and uses the mapped
address to write to and read from the address.

 /* setup error-interrupt handler */

intConnect(INUM_TO_IVEC(VICVME_INTVEC_RAWBUFOVFL),RAWBovfl,(in
t)0);
 sysIntEnable(VICVME_INTLVL);/*Enable interrupts*/

Here we connect and enable the dsp-to-167 interrupt for dealing with data array
buffer overflows. The RAWBovfl is a pointer to the ISR that handles buffer
overflows. VICVME_INTVEC_RAWBUFOVFL is a one-byte number (= 0xD1)
that we defined in the DSPVME.h header file. The programmer may define up to
256 interrupts for each of eight interrupt levels. The intConnect function writes
the pointer to the ISR into an interrupt vector table that the CPU looks at
whenever it receives an interrupt of the appropriate level. sysIntEnable then
sets a bit in the 167's interrupt service register that enables the interrupt level
VICVME_LEVEL (= 0x04).

 printf("End of Init\n");
}

int dspacq_run(void)
{ /* Download the COFF file and Start it running */
 if(dbvTIMLoadObject(tim,TIM_FILENAME)!=OK) {
 printf("dbvTIMLoadObject failed\n");exit(-1);

81

 }

This function downloads a 'C40 COFF object file onto a TIM40 site. The entry
address (if any) is remembered for later use.

 else if(dbvTIMRun(tim,0)!=OK) {
 printf("dbvTIMRun failed\n");
 printErrno (errnoGet ());
 return(ERROR);
 }
 else printf("COFF file downloaded and running.\n");
}

This function executes a program on the specified TIM site at the indicated entry
point. If the entry point is 0, then the entry point located in the last COFF module
downloaded to that site is used.

int *s1hpctrl_1(S1HPCommand)
 bin_command *S1HPCommand;
 {

This remote procedure is called by the LabVIEW user interface. RPCs are a
standard method designed by Sun Computer for executing functions between
two computers. A port (111) is reserved on all computers using the standard.
The computer acting as the server initiates its RPC service and then blocks (i.e.
pauses CPU execution of the service until it receives a semaphore). The client
sends a request, which consists of a program number, a version number, and a
procedure number, to port 111 of the server. The server unblocks and
processes the RPC.

switch(S1HPCommand->execution_state) {
 case CAPTUREDATA: /* init the data collection */

Here we decide which of the functions within the data channel "Raw Signal 1
binned by Raw HP position" to perform. There are two; CAPTUREDATA and

82

ABORTCAPTURE. The former initiates data capture and then turns over control
of data transfer from the DSP to the LabVIEW user interface to an ISR
(S1HP_hndl) that checks whether all the data have been acquired; if they have
not, S1HP_hndl gives a semaphore to the data-forwarding loop in S1HP_run.
The latter writes the data buffer to a file on the Sun workstation, where LabVIEW
reads and displays it.

S1HP=malloc(RAW_ARRAY_SIZE*sizeof(int));
/* allocate the data buffer */

Allocate memory for the data. Although the actual array will typically be much
smaller than the size of the raw array buffer (the bin size would have to be
smaller than the resolution of the position measurement, ~3Å, for this array to be
larger than the raw array), this size is ample for our purposes.

sysLocalToBusAdrs(VME_AM_EXT_USR_DATA,
S1HP,&tempintp); /* tell DSP where buffer is */
dbv4xWriteSharedWord(board,&tempintp,S1HPPTR);

Tell the DSP where the base address of the (local) data buffer is mapped into
VME address space.

ret=0;
 if (S1HP!=NULL) { /* any errors in allocations? */

Set the return value to zero (i.e. return OK). If things do not work out, this value
will be changed later. Continue with this RPC only if we were able to allocate
memory for the data buffer and open the binary data files. Otherwise, set the
buffer pointer to zero and close the files (see below).

 BinSize = S1HPCommand->BinSize/HP_RESOLUTION;
 S1HPPoints = S1HPCommand->Points;
 S1HPStart = S1HPCommand->Start;
 S1HPStop = S1HPCommand->Stop;

83

The command received from the LabVIEW user interface is an ordered stream of
bytes that we can separate into a structure of variables. Here we assign the
structure members to local variables. This is done to isolate the command
structure from local usage of the variable values: we do not want the values
changing unpredictably in case a new command is sent.

 /* go to start position*/
 hydro_in();

 while((HPArrayStart * HP_RESOLUTION) > S1HPStart - 100.0) {
 taskDelay(300);
 printf("Waiting %d sec for start position.....\n", start_time+=5);
 }
 hydro_out();

 while(S1HPStart > HPArrayStart * HP_RESOLUTION)
 taskDelay(6);

Move the stage to the start position. The commands "hydro_in" and "hydro_out"
are drivers written by another member of our team (Scott Locklin) for moving the
piston used to drive the stage back and forth. These functions set bits in a
Xycom XVME-240 digital I/O card whose outputs switch solenoid-driven
pneumatic valves. This bit of code moves the stage away from the piston while
reading the position every five seconds, until it is 100 mm past the starting
position. The piston then reverses direction and samples the position at a faster
rate (0.1 sec) until it gets back to the start position.

 S1HPBflag=EMPTY;
 channel_go_register_temp |= S1HP_FLAG;
 printf("S1HPCtrl_1: acquisition initialized...\n");

 }

There are two indications to the DSP that we want data on this channel. The
channel_go_register is a bit-mapped 32-bit integer that tells the DSP which of
the twenty possible data streams are wanted. If a particular data stream is
requested, its buffer flag tells the DSP whether the data buffer in 167 memory
has been written to the binary file on the Sun workstation.

else {

84

 free(S1HP);
 printf("S1HPCtrl_1: error allocating data buffer\nAcquisition

Aborted!\n");
 ret=-1;

 }
break;

If there was an error in allocating memory, this is where we deallocate memory,
print an error message, and return an error value to the calling routine.

 case ABORTCAPTURE: /* abort data collection */
 S1HPPoints=0;

printf("Sig 1 Raw binned by HP Raw aborted.\n");
ret = -1;

 break;

This is the RPC case that aborts data acquisition. It simply sets the number of
points to zero, but as will be seen, this is sufficient to stop data capture and stop
the stage from moving.

 default:
 ret = -1;
 }
 return &ret;
 }/*End of S1HP RPC */

The default case is executed when no other case is. We actually return a
pointer to the return value; this is a part of the RPC convention.

void S1HP_run() {

S1HP_run is the function that does most of the work for this data channel. It
waits for a semaphore that is given by the ISR that responds to an interrupt from
the DSP. The DSP sends the interrupt when it finishes writing a buffer of data to
167 memory. When S1HP_run receives the semaphore, it writes the data buffer

85

to a binary data stream that is associated with an Ethernet connection to the
LabVIEW user interface on the Sun workstation.

/* task init */
 taskPrioritySet(taskIdSelf(), 105);

Task prioritization is especially important in real-time operating systems. This
means that the programmer can select which running programs - tasks - are
more important than others. These tasks will preferentially receive CPU time
when interrupts or semaphores from them are received by the CPU. Priority is a
number from zero to 255, with zero being the highest priority. The highest
priorities have been appropriated by the system executive functions; we
wouldn't want the operating system to stop functioning in order to service on of
our tasks; it may not know how to start again! We have given our highest
priority (100) to the port mapper task; it services RPCs, so we want to be able to
send an abort command via RPC and have that override data acquisition or
stage movement. Here we give a priority of 105 to the operational task for the
"Signal 1 binned by Raw HP position" channel.

/* store pointers to flag into dsp board */
 sysLocalToBusAdrs(VME_AM_EXT_USR_DATA, &S1HPBflag,&tempintp);
 dbv4xWriteSharedWord(board,&tempintp,S1HP_BFLAG);

Get the VME address of the S1HP buffer ready/not ready flag and send that to
the DSP.

 /* setup semaphore for buffer filled interrupt message passing */
 S1HPbufsem=semBCreate(SEM_Q_PRIORITY,SEM_EMPTY);

Create a binary semaphore that gives a software signal when the 167 CPU
receives a "buffer full" interrupt from the DSP.

 /* init the interrupt handler for messages from DBV42 */

/* connect routine to interrupt */

intConnect(INUM_TO_IVEC(VICVME_INTVEC_S1HP),S1HP_hndl,(int)0);

86

Here we write the pointer to the interrupt service routine to the interrupt vector
table; when the 167 receives an interrupt of a certain level (priority), it goes to
the table for that level and uses the interrupt number to get the pointer to the
ISR.

/*always wait for the semaphore then process the buffer */
 while(1) {
 semTake(S1HPbufsem,WAIT_FOREVER);

We enter the infinite while loop that is the main operating mode of this task. We
wait for the semaphore given by the DSP ISR after is fills a data buffer.

 if(curpts == 0) {
/* open the output data file buf */

if((S1HPfd=fopen(S1HP_filename,"a"))==0)
 printf("Error opening S1HP binary file.\n");

/* open the array parameter file buf */
if((S1HPAPfd=fopen(S1HPAP_filename,"a"))==0)
 printf("Error opening S1HPAP binary file.\n");

 }

Open two files for writing binary data to the LabVIEW user interface on the Sun
workstation. The first file, named S1HP.bin, is used for writing the data buffer.
The second, named S1HPAP.bin, is used for writing the array parameters (viz.
number of points in the variably-sized array and the starting position of the
array) used in correctly indexing the LabVIEW display to the data.

 k+=fwrite(&S1HPArrayStart, sizeof(int), 1, S1HPAPfd);
 k+=fwrite(&BinNum, sizeof(int), 1, S1HPAPfd);
 if(k == 2){
 freopen(S1HPAP_filename, "a", S1HPAPfd);
 fseek(S1HPAPfd, k, SEEK_SET);
 }

Write the starting position of the current signal data array and the number of
points to the parameter file. These data are used to correctly place the signal
data in the plot.

87

 j=BinNum;
 while(j > 0) /* make sure whole buffer gets sent */
 j-=fwrite(S1HP+j-BinNum,sizeof(int),j,S1HPfd);

Write the signal data from 167 memory to the data stream buffers.

 fflush(S1HPfd);
 fflush(S1HPAPfd);
 ioctl(S1HPfd, FIOSYNC, 0); /*sync to disk*/
 ioctl(S1HPAPfd, FIOSYNC, 0); /*sync to disk*/

Flushing the buffers means making sure the data remaining in them are sent to
the stream. then send a command to the workstation to write the data from its
input buffer to the hard disk. This action is normally performed periodically
anyway by the operating system of the host computer, but we were having some
problems with data overruns from the dsp-to-167 transfer. We determined that
the problem lay in the 167-to-workstation transfer, specifically the Network File
Service (NFS) was bogging down. Flushing the buffers and immediately writing
the data to the disk interface helped.

 curpts += BinNum;
S1HPBflag=EMPTY; /* signal to DSP that next buffer can be safely sent */

 if((channel_go_register & S1HP_FLAG)== 0) /* end of data taking for now
*/
 {

 fclose(S1HPfd);
 fclose(S1HPAPfd);
 free(S1HP);
 S1HP=0;

 }
 }/* end while */
}

FUNCPTR S1HP_hndl(int param){
 S1HPBflag=FULL;
 if(channel_go_register & S1HP_FLAG) { /* if acquiring data on this
channel */

88

 if((S1HPPoints-=BinNum)<= 0){
 channel_go_register &= ~S1HP_FLAG;
 BinNum += S1HPPoints;/*only send enough points*/
 hydro_stop();
 }
 semGive(S1HPbufsem);
 }
}

S1HP_hndl is the interrupt handler for the interrupt coming from the dsp. This
interrupt signals that an array of binned data has been transferred to 167
memory. The handler sets the buffer flag S1HPBflag to FULL so the dsp knows
when it checks that it will overwrite data in 167 memory. We then check to make
sure we are actually supposed to be acquiring data on this channel, and then
whether we have the requested number of points. If so, we reset the local data
flag register and stop the piston from moving. Lastly, we give a semaphore to
S1HP_run so it will send the data on to the workstation.

int *commandctrl_1(Command)
 command *Command;
 {

commandctrl_1 services RPCs not connected with particular channels, viz.
current position, ADC sample rate, and the global start command.

 switch(Command->commandID) {

 case COMMAND_POSITION :
ret = HP_posvel(0,8);
break;

HP_posvel is a function from the HP software that polls the laser axis board’s
position register. We user it to give a running position measurement to a
LabVIEW monitor.

 case COMMAND_ADCRATE :
adc_rate_divisor = Command->sample_rate_divisor;

89

printf("Changing ADC sampling rate to %f kHz.\n", 12288.0/(65537 -
adc_rate_divisor));

ret = 0;
break;

Change the ADC sample rate here. The divisor is calculated in LabVIEW and
written to the local variable adc_rate_divisor. This is one of the variables whose
local address was converted to a VME bus address during initialization. dspacq
reads this value whenever the interrupt routine fills an array, and sets the
sample rate accordingly.

 case COMMAND_GO :
channel_go_register |= channel_go_register_temp; /* set channels in

temp to acquire */
channel_go_register_temp=0; /* clear temp */
printf("command go issued...\n");
ret = 0;
break;

 default:
ret = -1;
break;

 } /* end switch(Command->commandID) */
 return &ret;
 } /* End of Command */

dspacq reads channel_go_register to find out which of the data channels need
to be serviced. channel_go_temp is a local copy not visible to the dsp; its bits
are set separately by the LabVIEW programs for the desired channels of data.
The global start command is sent by Command.vi, and sets the
channel_go_register equal to the accumulated channels in the temporary
register. Thus data acquisition is synchronized for the selected channels.

1R.P. Madden and K. Codling, Phys. Rev. Lett., 10(1963) 516.
2J.W. Cooper, U. Fano and F.Prats, Phys. Rev. Lett., 10(1963) 518.
3 L. Wu and J. Xi, J. Phys. B 23 (1990) 727.
4 A.Macías, T. Martin, A. Riera and M. Yunez, Phys. Rev. A 36 (1987) 4187.
5 M. Domke, K. Schulz, G. Remmers, and G. Kaindl, and D. Wintgen, “High Resolution Study of 1P0

Double-excitation states in Helium”, Phys. Rev A, 53, 1424 (1996).

90

6 C. D. Lin, Phys. Rev. A 29, 1019 (1984). Much theoretical and experimental work has gone into the
physics of autoionization of helium. While this phenomenon will not be dealt with further here, there are
several good reviews of the literature, among them the paper by Domke, et. al., cited above, and this one.
7 ibid.
8Huff, W. R. A, PhD Thesis, The University of California, Berkeley, LBL-38492(1996).
9 Chamberlain, J., Chantry, G. W., and Stone, N. W. B., "The Principles of Interferometric Spectroscopy",
(Wiley, New York, 1979).
10Howells, M., "Manufacturing Tolerances for the ALS Soft X-ray Interferometer", ALS Note, 5-27-93.
11I. S. Gradshteyn, and I. M. Ryzhik, "Table of integrals, series, and products”, (New York : Academic
Press, 1980).
12 M. Born and E. Wolf, Principles of Optics, 7th ed., (Cambridge, Cambridge University Press, 1999), p.
546.
13op. cit., pp. 4-5.
14R. Duarte, M.R, Howells, Z. Hussain, T. Lauritzen, R. McGill, E. Moler, and J. Spring, "A Linear
Motion Machine for Soft X-ray Interferometry”, LBNL Report LBNL-40494, July, 1997.
15M.R. Howells, R. Duarte, R. McGill, "Properties of the Cartwheel-type Flexural Hinge", LBNL Report
LSBL-213, 1994.
16ibid., p. 6.
17"LBL BEAMSPLITTER QA DATA", Report of quality assurance, Rocketdyne Albuquerque Operations,
June 2, 1995.
18The interaction of x-rays with matter is a particular interest of the researchers at the Center for X-ray
Optics at LBNL. See, for instance their website at http://www-cxro.lbl.gov.
19 Facsimile communication from David Lunt of Photon Sciences to Malcolm Howells, November 11,
1994.
20 Hewlett-Packard, “Laser and Optics Users Manual”,(HP, Santa Clara, 1992).
21 M. Krumrey, et al., Schottky type photodiodes as detectors in the VUV and soft x-ray range”, Appl.
Opt. 27, 4336, (1988).
22 L.R. Canfield, J. Kerner, and R. Korde, “Stability and quantum efficiency performance of silicon
photodiode detectors in the far ultraviolet”, Appl. Opt. 28, 3940, (1989).
23Hatheway, A. E., "Alignment of Flexure Stages for Best Rectilinear Performance", SPIE Proceedings,
2542, pp. 70 - 80.

24ibid.
25 The raw CMM data is in a fax from Jerome Cummings to Rob Duarte, July 24, 1995. The analysis was
performed by Rob Duarte and described to the author in a telephone call on April 28, 2000.
26 S. Locklin, E. Moler, J. Spring, Z. Hussain, and M. Howells, “Progress in Soft X-ray Fourier Transform
Spectrometry”, from “Advanced Light Source Compendium of User Abstracts and Technical Reports
1997”, D. J. Dixon, A. L. Robinson, A. Greiner, and C. Silva, eds., (LBNL, Berkeley, 1998).
27 New Focus’ online information at http://www.newfocus.com/Online_catalog/6/145.

